当前位置: 首页>>代码示例>>C++>>正文


C++ BFMatcher::train方法代码示例

本文整理汇总了C++中BFMatcher::train方法的典型用法代码示例。如果您正苦于以下问题:C++ BFMatcher::train方法的具体用法?C++ BFMatcher::train怎么用?C++ BFMatcher::train使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BFMatcher的用法示例。


在下文中一共展示了BFMatcher::train方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: train

void YawAngleEstimator::train()
{
	printf("YawAngleEstimator:train\n");
	vector<vector<KeyPoint>> kp(AngleNum,vector<KeyPoint>());
	vector<Mat> descriptors(AngleNum,Mat());
	featureExtract(YawTemplate, kp, descriptors, Feature);

	if (useIndex)
	{
		//build Index with Lsh and Hamming distance
		for (int i = 0; i < AngleNum; i++)
		{
			flann::Index tempIndex;
			if (Feature == USE_SIFT)
			{
				tempIndex.build(descriptors[i], flann::KDTreeIndexParams(4), cvflann::FLANN_DIST_L2);
			}
			else
			{
				tempIndex.build(descriptors[i], flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);
			}
			YawIndex.push_back(tempIndex);
		}
	}
	else
	{
		//build BFMathers
		for (int i = 0; i < AngleNum; i++)
		{
			//record
			fss<<"\nKeypoints number of template "<< i <<" is "<< descriptors[i].rows << endl;

			BFMatcher tempMatcher;
			vector<Mat> train_des(1, descriptors[i]);
			tempMatcher.add(train_des);
			tempMatcher.train();
			matchers.push_back(tempMatcher);
		}
	}
}
开发者ID:ZiangLi,项目名称:PoseEstimation,代码行数:40,代码来源:YawAnlgeEstimator.cpp

示例2: main

//--------------------------------------【main( )函数】-----------------------------------------
//          描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main()
{
	//【0】改变console字体颜色
	system("color 5F"); 

	ShowHelpText();

	//【1】载入图像、显示并转化为灰度图
	Mat trainImage = imread("1.jpg"), trainImage_gray;
	imshow("原始图",trainImage);
	cvtColor(trainImage, trainImage_gray, CV_BGR2GRAY);

	//【2】检测SIFT关键点、提取训练图像描述符
	vector<KeyPoint> train_keyPoint;
	Mat trainDescription;
	SiftFeatureDetector featureDetector;
	featureDetector.detect(trainImage_gray, train_keyPoint);
	SiftDescriptorExtractor featureExtractor;
	featureExtractor.compute(trainImage_gray, train_keyPoint, trainDescription);

	// 【3】进行基于描述符的暴力匹配
	BFMatcher matcher;
	vector<Mat> train_desc_collection(1, trainDescription);
	matcher.add(train_desc_collection);
	matcher.train();

	//【4】创建视频对象、定义帧率
	VideoCapture cap(0);
	unsigned int frameCount = 0;//帧数

	//【5】不断循环,直到q键被按下
	while(char(waitKey(1)) != 'q')
	{
		//<1>参数设置
		double time0 = static_cast<double>(getTickCount( ));//记录起始时间
		Mat captureImage, captureImage_gray;
		cap >> captureImage;//采集视频到testImage中
		if(captureImage.empty())
			continue;

		//<2>转化图像到灰度
		cvtColor(captureImage, captureImage_gray, CV_BGR2GRAY);

		//<3>检测SURF关键点、提取测试图像描述符
		vector<KeyPoint> test_keyPoint;
		Mat testDescriptor;
		featureDetector.detect(captureImage_gray, test_keyPoint);
		featureExtractor.compute(captureImage_gray, test_keyPoint, testDescriptor);

		//<4>匹配训练和测试描述符
		vector<vector<DMatch> > matches;
		matcher.knnMatch(testDescriptor, matches, 2);

		// <5>根据劳氏算法(Lowe's algorithm),得到优秀的匹配点
		vector<DMatch> goodMatches;
		for(unsigned int i = 0; i < matches.size(); i++)
		{
			if(matches[i][0].distance < 0.6 * matches[i][1].distance)
				goodMatches.push_back(matches[i][0]);
		}

		//<6>绘制匹配点并显示窗口
		Mat dstImage;
		drawMatches(captureImage, test_keyPoint, trainImage, train_keyPoint, goodMatches, dstImage);
		imshow("匹配窗口", dstImage);

		//<7>输出帧率信息
		cout << "\t>当前帧率为:" << getTickFrequency() / (getTickCount() - time0) << endl;
	}

	return 0;
}
开发者ID:BigCreatation,项目名称:OpenCV3-Intro-Book-Src,代码行数:75,代码来源:93_SiftAndBFMatcher.cpp


注:本文中的BFMatcher::train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。