当前位置: 首页>>代码示例>>C++>>正文


C++ BFMatcher::match方法代码示例

本文整理汇总了C++中BFMatcher::match方法的典型用法代码示例。如果您正苦于以下问题:C++ BFMatcher::match方法的具体用法?C++ BFMatcher::match怎么用?C++ BFMatcher::match使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BFMatcher的用法示例。


在下文中一共展示了BFMatcher::match方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: findMatches

int findMatches(Mat img1, Mat img2, vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2, Mat descriptors1, Mat descriptors2, BFMatcher matcher, vector<Point2f>& finalPoint1, 
	vector<Point2f>& finalPoint2, double passRatio, vector<KeyPoint>& keypointsOut) {
	vector<DMatch> matches;
	matcher.match(descriptors1, descriptors2, matches);
	vector<char> matchesMask(matches.size(), 0);

	// Find max distance
	double maxDistance = 0;
	for (int idx = 0; idx < matches.size(); idx++) {
		if (matches[idx].distance > maxDistance)
			maxDistance = matches[idx].distance;
	}

	// Cut out 1-passratio % or points
	for (int idx = 0; idx < matches.size(); idx++) {
		if (matches[idx].distance <= (maxDistance*passRatio))
			matchesMask[idx] = 1;
	}

#ifdef DEBUG
	namedWindow("Matches", CV_WINDOW_AUTOSIZE);
	Mat img_matches;
	drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches, Scalar::all(-1), Scalar::all(-1), matchesMask, 2);

	while (1) {
		imshow("Matches", img_matches);
		int keypress = waitKey(30);
		if (keypress == 32) {
			break;
		}
	}
#endif

	// Output final points as well as a new vector of keypoints
	for (int idx = 0; idx < matches.size(); idx++) {
		if (matchesMask[idx]) {
			finalPoint1.push_back(keypoints1[matches[idx].queryIdx].pt);
			finalPoint2.push_back(keypoints2[matches[idx].trainIdx].pt);
			keypointsOut.push_back(keypoints2[matches[idx].trainIdx]);
		}
	}
	return 0;
}
开发者ID:Wawiti,项目名称:EE631,代码行数:43,代码来源:Assign6.cpp

示例2: findTopFiveBFMatches

void findTopFiveBFMatches(Mat hqDesc, vector<Mat>* keyframeDesc, vector<vector< DMatch >>* matchVec, vector<int>* matchIndices){
	BFMatcher matcher;
	int index = 0;

	//Calculate matches between high quality image and 
	for (vector<Mat>::iterator it = keyframeDesc->begin(); it != keyframeDesc->end(); ++it){
		vector< DMatch > matches;

		//calculate initial matches
		Mat kfDesc = *it;
		matcher.match(hqDesc, kfDesc, matches);

		matchVec->push_back(matches);
		index++;
	}
	//pickTopFive
	pickTopFive(matchVec, matchIndices);
	index = 0;
}
开发者ID:nburek,项目名称:KinectReconstruction,代码行数:19,代码来源:main.cpp

示例3: find_next_homography

Mat find_next_homography(Mat image, Mat image_next, vector<KeyPoint> keypoints_0, Mat descriptors_0,
						 SurfFeatureDetector detector, SurfDescriptorExtractor extractor, 
						 BFMatcher matcher, vector<KeyPoint>& keypoints_next, Mat& descriptors_next)
{

	//step 1 detect feature points in next image
	vector<KeyPoint> keypoints_1;
	detector.detect(image_next, keypoints_1);

	Mat img_keypoints_surf0, img_keypoints_surf1;
	drawKeypoints(image, keypoints_0, img_keypoints_surf0);
	drawKeypoints(image_next, keypoints_1, img_keypoints_surf1);
	//cout << "# im0 keypoints" << keypoints_0.size() << endl;
    //cout << "# im1 keypoints" << keypoints_1.size() << endl;
	imshow("surf 0", img_keypoints_surf0);
	imshow("surf 1", img_keypoints_surf1);

    //step 2: extract feature descriptors from feature points
	Mat descriptors_1;
	extractor.compute(image_next, keypoints_1, descriptors_1);

	//step 3: feature matching
	//cout << "fd matching" << endl;
	vector<DMatch> matches;
	vector<Point2f> matched_0;
	vector<Point2f> matched_1;

	matcher.match(descriptors_0, descriptors_1, matches);
	Mat img_feature_matches;
	drawMatches(image, keypoints_0, image_next, keypoints_1, matches, img_feature_matches );
	imshow("Matches", img_feature_matches);

	for (int i = 0; i < matches.size(); i++ )
	{
		matched_0.push_back(keypoints_0[matches[i].queryIdx].pt);	
		matched_1.push_back(keypoints_1[matches[i].trainIdx].pt);	
	}
	keypoints_next = keypoints_1;
	descriptors_next = descriptors_1;
	return findHomography(matched_0, matched_1, RANSAC);

}
开发者ID:jaisrael,项目名称:AR-Tower-Defense,代码行数:42,代码来源:chessboard.cpp

示例4: getmatched

bool recognizer::getmatched(  Mat  mat1, Mat  mat2){
    Mat det1=mat1;Mat det2 = mat2;
    std::vector<KeyPoint> keypoints_object, keypoints_scene;
    detector->detect(det1,keypoints_object);
    detector->detect(det2,keypoints_scene);
    if(keypoints_object.size()==0 || keypoints_scene.size()==0){
        return false;
    }
    Mat descriptors1, descriptors2;
    extractor->compute(det1, keypoints_object, descriptors1);
    extractor->compute(det2, keypoints_scene, descriptors2);
    BFMatcher matcher;
    vector<DMatch> matches;
    matcher.match(descriptors1, descriptors2, matches);
//    Rect r3 = det1&det2;
//    double match = r3.area()/det2.area();
    if(matches.size()<threholdNum)
        return false;
    return true;
}
开发者ID:wangha43,项目名称:track,代码行数:20,代码来源:recognize.cpp

示例5: main

int main(int argc, char** argv)
{
    //read images
    Mat img_1c=imread("img3.jpg");
    Mat img_2c=imread("img1.jpg");
    
    Mat img_1, img_2;
    //transform images into gray scale
    cvtColor( img_1c, img_1, CV_BGR2GRAY );
    cvtColor( img_2c, img_2, CV_BGR2GRAY );

    SIFT sift;
    //Ptr<SIFT> ptrsift = SIFT::create(50, 3, .2, 5, 10);  //works for imag1 and 2
    Ptr<SIFT> ptrsift = SIFT::create(15, 5, .1, 5, 10); 
    vector<KeyPoint> key_points_1, key_points_2;
    Mat detector;
    //do sift, find key points
    ptrsift->detect(img_1, key_points_1);
    ptrsift->detect(img_2, key_points_2);
    //sift(img_2, Mat(), key_points_2, detector);

    //PSiftDescriptorExtractor extractor;
    Ptr<SIFT> extractor = SIFT::create(); 
    
    Mat descriptors_1,descriptors_2;
    //compute descriptors
    extractor->compute(img_1,key_points_1,descriptors_1);
    extractor->compute(img_2,key_points_2,descriptors_2);
    cout<<descriptors_1;
    //use burte force method to match vectors
    BFMatcher matcher;
    vector<DMatch>matches;
    matcher.match(descriptors_1,descriptors_2,matches);

    //draw results
    Mat img_matches;
    drawMatches(img_1c,key_points_1,img_2c,key_points_2,matches,img_matches);
    imshow("sift_Matches",img_matches);
    waitKey(0);
    return 0;
}
开发者ID:zaddan,项目名称:approximated_algorithm,代码行数:41,代码来源:sift.cpp

示例6: compute

bool compute(Mat CurrentImageGrayScale, Mat Kinverse, const int iteration){
    vector<KeyPoint> CurrentFeatures;
    SurfDetector.detect(CurrentImageGrayScale, CurrentFeatures);
    Mat CurrentFeatureDescriptors;
    SurfDescriptor.compute(CurrentImageGrayScale, CurrentFeatures, CurrentFeatureDescriptors);
    vector<DMatch> matches;
    matcher.match(PreviousFeatureDescriptors, CurrentFeatureDescriptors, matches);
    if (matches.size() > 200){
        nth_element(matches.begin(), matches.begin()+ 200, matches.end());
        matches.erase(matches.begin() + 201, matches.end());
    }
    //Debug(matches, PreviousImageGrayScale, CurrentImageGrayScale, PreviousFeatures, CurrentFeatures);
    vector< pair<double,double> > FirstImageFeatures;
    vector< pair<double,double> > SecondImageFeatures;
    for(int i  = 0; i < matches.size(); i++){
        Point2f myft = PreviousFeatures[matches[i].queryIdx].pt;
        Mat FtMatForm = (Mat_<double>(3,1) << (double)myft.x, (double)myft.y, 1.0);
        FtMatForm = Kinverse*FtMatForm;       
        pair<double,double> tmp = make_pair(FtMatForm.at<double>(0,0), FtMatForm.at<double>(1,0));
        FirstImageFeatures.push_back(tmp);
        
        myft = CurrentFeatures[matches[i].trainIdx].pt;
        FtMatForm = (Mat_<double>(3,1) << (double)myft.x, (double)myft.y, 1.0);
        FtMatForm = Kinverse*FtMatForm;       
        tmp = make_pair(FtMatForm.at<double>(0,0), FtMatForm.at<double>(1,0));
        SecondImageFeatures.push_back(tmp);
    }
    vector<int> inliers_indexes;
    Mat RobustEssentialMatrix= Ransac(FirstImageFeatures, SecondImageFeatures, 0.00001, 8, 2000, inliers_indexes);
    //cout << RobustEssentialMatrix << endl;
    
    //Debug2(matches, PreviousImageGrayScale, CurrentImageGrayScale, PreviousFeatures, CurrentFeatures, inliers_indexes);
    
    Mat P = Mat::eye(3,4,CV_64F);
    if (!GetRotationAndTraslation(RobustEssentialMatrix, FirstImageFeatures, SecondImageFeatures, inliers_indexes, P)){
        cerr << "Recovering Translation and Rotation: Failed" << endl;
        return false;
    }
    //cout << P << endl;
    Mat Transformation = Mat::zeros(4,4, CV_64F);
    Transformation.at<double>(3,3) = 1.0;
    for(int i = 0 ; i < 3; i++)
        for(int j = 0; j < 4; j++)
            Transformation.at<double>(i, j) = P.at<double>(i, j);
    Mat TransformationInverse = Transformation.inv();
    Pose = Pose * TransformationInverse;
    cerr << Pose.at<double>(0, 3) << " " << Pose.at<double>(1, 3) << " " << Pose.at<double>(2, 3) << endl;    
    
    PreviousImageGrayScale = CurrentImageGrayScale;
    PreviousFeatures = CurrentFeatures;
    PreviousFeatureDescriptors = CurrentFeatureDescriptors;
    
    //viejo
    
//    vector< pair<int,int> > correspondences = harrisFeatureMatcherMCC(PreviousImageGrayScale, CurrentImageGrayScale, PreviousFeatures, CurrentFeatures);
//    cout << "Iteracion" << iteration << "Cantidad de correspondencias " << correspondences.size() << endl;
//    vector< pair<double,double> > FirstImageFeatures;
//    vector< pair<double,double> > SecondImageFeatures;
//    for(int i  = 0; i < correspondences.size(); i++){
//        pair<int,int> myft = PreviousFeatures[correspondences[i].first];
//        Mat FtMatForm = (Mat_<double>(3,1) << (double)myft.first, (double)myft.second, 1.0);
//        FtMatForm = Kinverse*FtMatForm;       
//        pair<double,double> tmp = make_pair(FtMatForm.at<double>(0,0), FtMatForm.at<double>(1,0));
//        FirstImageFeatures.push_back(tmp);
//        
//        myft = CurrentFeatures[correspondences[i].second];
//        FtMatForm = (Mat_<double>(3,1) << (double)myft.first, (double)myft.second, 1.0);
//        FtMatForm = Kinverse*FtMatForm;       
//        tmp = make_pair(FtMatForm.at<double>(0,0), FtMatForm.at<double>(1,0));
//        SecondImageFeatures.push_back(tmp);
//    }
//    vector<int> inliers_indexes;
//    Mat RobustEssentialMatrix= Ransac(FirstImageFeatures, SecondImageFeatures, 0.98, 0.00001, 0.5, 8, FirstImageFeatures.size()/2, inliers_indexes);
//    cout << "Iteration" << iteration << "Final EssentialMatrix" << endl;
//    cout << RobustEssentialMatrix << endl;
//    
//    
//    vector<pair<int, int> > correspondences_inliers;
//    for(int i = 0; i < inliers_indexes.size(); i++)
//        correspondences_inliers.push_back(correspondences[inliers_indexes[i]]);
//    debugging2(PreviousImageGrayScale, CurrentImageGrayScale, PreviousFeatures, CurrentFeatures, correspondences_inliers);
//    
//    Mat P = Mat::eye(3,4,CV_64F);
//    if (!GetRotationAndTraslation(RobustEssentialMatrix, FirstImageFeatures, SecondImageFeatures, inliers_indexes, P))
//        return false;
//    cout << "Iteration" << iteration << "Camera Matrix" << endl;
//    cout << P << endl;
//    Mat Transformation = Mat::zeros(4,4, CV_64F);
//    Transformation.at<double>(3,3) = 1.0;
//    for(int i = 0 ; i < 3; i++)
//        for(int j = 0; j < 4; j++)
//            Transformation.at<double>(i, j) = P.at<double>(i, j);
//    Mat TransformationInverse = Transformation.inv();
//    Pose = Pose * TransformationInverse;
//    PreviousImageGrayScale = CurrentImageGrayScale;
//    PreviousFeatures = CurrentFeatures;
//    cerr << Pose.at<double>(0, 4) << Pose.at<double>(1, 4) << Pose.at<double>(2, 4) << endl;

}
开发者ID:juangil,项目名称:visualOdometry,代码行数:99,代码来源:VisualOdometry.cpp

示例7: match

/* perform 2D SURF feature matching */
void match (Mat img_1, Mat img_2, vector<KeyPoint> keypoints_1,
    vector<KeyPoint> keypoints_2, vector<DMatch> &good_matches,
    pcl::CorrespondencesPtr &correspondences)
{
  SurfDescriptorExtractor extractor;
  Mat descriptors_1, descriptors_2;

  extractor.compute (img_1, keypoints_1, descriptors_1);
  extractor.compute (img_2, keypoints_2, descriptors_2);

  //FlannBasedMatcher matcher;
  BFMatcher matcher (NORM_L2);
  std::vector<DMatch> matches;

  matcher.match (descriptors_1, descriptors_2, matches);

  double max_dist = 0;
  double min_dist = 100;

  for (int i = 0; i < descriptors_1.rows; i++)
  {
    double dist = matches[i].distance;

    if (dist < min_dist)
      min_dist = dist;
    if (dist > max_dist)
      max_dist = dist;
  }

  for (int i = 0; i < descriptors_1.rows; i++)
  {
    // need to change the factor "2" to adapt to different cases
    if (matches[i].distance < 3 * min_dist)  //may adapt for changes
    {
      good_matches.push_back (matches[i]);
    }
  }

  correspondences->resize (good_matches.size ());

  for (unsigned cIdx = 0; cIdx < good_matches.size (); cIdx++)
  {
    (*correspondences)[cIdx].index_query = good_matches[cIdx].queryIdx;
    (*correspondences)[cIdx].index_match = good_matches[cIdx].trainIdx;

    if (0)  // for debugging
    {
      cout << good_matches[cIdx].queryIdx << " " << good_matches[cIdx].trainIdx
          << " " << good_matches[cIdx].distance << endl;
      cout << good_matches.size () << endl;
    }
  }

  // change the constant value of SHOW_MATCHING to 1 if you want to visulize the matching result
  if (SHOW_MATCHING)
  {
    Mat img_matches;
    drawMatches (img_1, keypoints_1, img_2, keypoints_2, good_matches,
        img_matches, Scalar::all (-1), Scalar::all (-1), vector<char> (),
        DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    //-- Show detected matches
    imshow ("Good Matches", img_matches);
    waitKey (0);
  }
}
开发者ID:ClaireXie,项目名称:modeling_3d,代码行数:67,代码来源:read.cpp

示例8: computePoseDifference

void computePoseDifference(Mat img1, Mat img2, CommandArgs args, Mat k, Mat& dist_coefficients, double& worldScale, Mat& R, Mat& t, Mat& img_matches)
{
   cout << "%===============================================%" << endl;

   Mat camera_matrix = k.clone();
   if (args.resize_factor > 1) 
   {
      resize(img1, img1, Size(img1.cols / args.resize_factor, 
               img1.rows / args.resize_factor)); // make smaller for performance and displayablity
      resize(img2, img2, Size(img2.cols / args.resize_factor,
               img2.rows / args.resize_factor));
      // scale matrix down according to changed resolution
      camera_matrix = camera_matrix / args.resize_factor;
      camera_matrix.at<double>(2,2) = 1;
   }

   Mat K1, K2;
   K1 = K2 = camera_matrix;
   if (img1.rows > img1.cols) // it is assumed the camera has been calibrated in landscape mode, so undistortion must also be performed in landscape orientation, or the camera matrix must be modified (fx,fy and cx,cy need to be exchanged)
   {
      swap(K1.at<double>(0,0), K1.at<double>(1,1));
      swap(K1.at<double>(0,2), K1.at<double>(1,2));
   }
   if (img2.rows > img2.cols)
   {
      swap(K2.at<double>(0,0), K2.at<double>(1,1));
      swap(K2.at<double>(0,2), K2.at<double>(1,2));
   }

   // Feature detection + extraction
   vector<KeyPoint> KeyPoints_1, KeyPoints_2;
   Mat descriptors_1, descriptors_2;

   Ptr<Feature2D> feat_detector;
   if (args.detector == DETECTOR_KAZE) 
   {
      feat_detector = AKAZE::create(args.detector_data.upright ? AKAZE::DESCRIPTOR_MLDB_UPRIGHT : AKAZE::DESCRIPTOR_MLDB, 
            args.detector_data.descriptor_size,
            args.detector_data.descriptor_channels,
            args.detector_data.threshold,
            args.detector_data.nOctaves,
            args.detector_data.nOctaveLayersAkaze);

   } else if (args.detector == DETECTOR_SURF)
   {
      feat_detector = xfeatures2d::SURF::create(args.detector_data.minHessian, 
            args.detector_data.nOctaves, args.detector_data.nOctaveLayersAkaze, args.detector_data.extended, args.detector_data.upright);
   } else if (args.detector == DETECTOR_SIFT)
   {
      feat_detector = xfeatures2d::SIFT::create(args.detector_data.nFeatures, 
            args.detector_data.nOctaveLayersSift, args.detector_data.contrastThreshold, args.detector_data.sigma);
   }

   feat_detector->detectAndCompute(img1, noArray(), KeyPoints_1, descriptors_1);
   feat_detector->detectAndCompute(img2, noArray(), KeyPoints_2, descriptors_2);

   cout << "Number of feature points (img1, img2): " << "(" << KeyPoints_1.size() << ", " << KeyPoints_2.size() << ")" << endl;

   // Find correspondences
   BFMatcher matcher;
   vector<DMatch> matches;
   if (args.use_ratio_test) 
   {
      if (args.detector == DETECTOR_KAZE) 
         matcher = BFMatcher(NORM_HAMMING, false);
      else matcher = BFMatcher(NORM_L2, false);

      vector<vector<DMatch>> match_candidates;
      const float ratio = args.ratio;
      matcher.knnMatch(descriptors_1, descriptors_2, match_candidates, 2);
      for (int i = 0; i < match_candidates.size(); i++)
         if (match_candidates[i][0].distance < ratio * match_candidates[i][1].distance)
            matches.push_back(match_candidates[i][0]);

      cout << "Number of matches passing ratio test: " << matches.size() << endl;

   } else
   {
      if (args.detector == DETECTOR_KAZE) 
         matcher = BFMatcher(NORM_HAMMING, true);
      else matcher = BFMatcher(NORM_L2, true);
      matcher.match(descriptors_1, descriptors_2, matches);
      cout << "Number of matching feature points: " << matches.size() << endl;
   }


   // Convert correspondences to vectors
   vector<Point2f>imgpts1,imgpts2;

   for(unsigned int i = 0; i < matches.size(); i++) 
   {
      imgpts1.push_back(KeyPoints_1[matches[i].queryIdx].pt); 
      imgpts2.push_back(KeyPoints_2[matches[i].trainIdx].pt); 
   }

   Mat mask; // inlier mask
   if (args.undistort) 
   {
      undistortPoints(imgpts1, imgpts1, K1, dist_coefficients, noArray(), K1);
      undistortPoints(imgpts2, imgpts2, K2, dist_coefficients, noArray(), K2);
//.........这里部分代码省略.........
开发者ID:AnnKatrinBecker,项目名称:OpenCV-test-crap,代码行数:101,代码来源:stereo_v3.cpp

示例9: detector

JNIEXPORT void JNICALL Java_org_recg_writehomog_NativeCodeInterface_nativeLoop
(JNIEnv * jenv, jclass, jlong hataddr, jlong gray1, jlong gray2)
{
	clock_t t1, t2;
	t1 = clock();
	homogandtimer *hatinloop = (homogandtimer *) hataddr;
    LOGD("passed just entered nativeloop b4 trying");
    try
    {
    	LOGD("passed just entered the try in nativeloop");
    	LOGD("passed char jenv getutfchars");
    	string homogstring;//(jidentitystr); // <--this one
    	LOGD("passed making jidentitystr");

    	//output the matrices to the Log
    	Mat frame1 = *((Mat *)gray1);
    	Mat frame2 = *((Mat *)gray2);
    	LOGD("passed making mats");

    	int minHessian = 400;

    	//initial variable declaration
    	OrbFeatureDetector detector(minHessian);
    	LOGD("passed making detector");
    	std::vector<KeyPoint> keypoints1, keypoints2;
    	LOGD("passed making keypoints");
    	OrbDescriptorExtractor extractor;
    	LOGD("passed making extractor");
    	Mat descriptors1, descriptors2;
    	LOGD("passed making descriptors");

    	//process first frame
    	detector.detect(frame1, keypoints1);
    	LOGD("passed detecting1");
    	extractor.compute(frame1, keypoints1, descriptors1);
    	LOGD("passed computing1");

    	//process second frame
    	detector.detect(frame2, keypoints2);
    	LOGD("passed detecting2");
    	extractor.compute(frame2, keypoints2, descriptors2);
    	LOGD("passed computing2");

    	//in case frame has no features (eg if all-black from finger blocking lens)
    	if (keypoints1.size() == 0){
    		LOGD("passed keypointssize was zero!!");
			frame1 = frame2.clone();
			keypoints1 = keypoints2;
			descriptors1 = descriptors2;
			//go back to the javacode and continue with the next frame
			return;
    	}

    	LOGD("passed keypointssize not zero!");
    	//Now match the points on the successive images
    	//FlannBasedMatcher matcher;
    	BFMatcher matcher;
    	LOGD("passed creating matcher");
    	std::vector<DMatch> matches;
    	LOGD("passed creating matches");
    	if(descriptors1.empty()){
    		LOGD("passed descriptors1 is empty!");
    	}
    	if(descriptors2.empty()){
    		LOGD("passed descriptors2 is empty!");
    	}
    	LOGD("passed key1 size %d", keypoints1.size());
    	LOGD("passed key2 size %d", keypoints2.size());

    	matcher.match(descriptors1, descriptors2, matches);
    	LOGD("passed doing the matching");

    	//eliminate weaker matches
    	double maxdist = 0;
		double mindist = 100;
		for (int j = 0; j < descriptors1.rows; j++){
			DMatch match = matches[j];
			double dist = match.distance;
			if( dist < mindist ) mindist = dist;
			if( dist > maxdist ) maxdist = dist;
		}

		//build the list of "good" matches
		std::vector<DMatch> goodmatches;
		for( int k = 0; k < descriptors1.rows; k++ ){
			DMatch amatch = matches[k];
			if( amatch.distance <= 3*mindist ){
				goodmatches.push_back(amatch);
			}
		}

	//Now compute homography matrix between the stronger matches
		//-- Localize the object
		std::vector<Point2f> obj;
		std::vector<Point2f> scene;
		if (goodmatches.size() < 4){
			frame1 = frame2.clone();
			keypoints1 = keypoints2;
			descriptors1 = descriptors2;
			return;
//.........这里部分代码省略.........
开发者ID:yddet12,项目名称:FaceRecog-android,代码行数:101,代码来源:NativeCodeInterface_jni.cpp

示例10: main

int main(int argc, char **argv) {
	// load image
	Mat img1 = imread("input_1.jpg");
	Mat img2 = imread("input_2.jpg");

	// resize
	resize(img1, img1, Size(640, 480));
	resize(img2, img2, Size(640, 480));

	// to gray (optional)
	//cvtColor(img1, img1, CV_BGR2GRAY);
	//cvtColor(img2, img2, CV_BGR2GRAY);

	// get features
	Ptr<Feature2D> f2d = xfeatures2d::SIFT::create();
	vector<KeyPoint> kp1, kp2;
	Mat dp1, dp2;


	int step = 10; // 10 pixels spacing between kp's

	for (int i = step; i<img1.rows - step; i += step)
	{
		for (int j = step; j<img1.cols - step; j += step)
		{
			// x,y,radius
			kp1.push_back(KeyPoint(float(j), float(i), float(step)));
		}
	}

	for (int i = step; i<img2.rows - step; i += step)
	{
		for (int j = step; j<img2.cols - step; j += step)
		{
			// x,y,radius
			kp2.push_back(KeyPoint(float(j), float(i), float(step)));
		}
	}

	get_features(f2d, img1, kp1, dp1);
	get_features(f2d, img2, kp2, dp2);

	// display keypoints to canvas
	Mat cvs1, cvs2;
	drawKeypoints(img1, kp1, cvs1);
	drawKeypoints(img2, kp2, cvs2);

	// find matches
	BFMatcher matcher;
	std::vector< DMatch > matches;
	matcher.match(dp1, dp2, matches);

	// display matches
	Mat cvs3;
	drawMatches(img1, kp1, img2, kp2, matches, cvs3);

	// show
	imshow("keypoints 1", cvs1);
	imshow("keypoints 2", cvs2);
	imshow("matches", cvs3);
	waitKey(0);
}
开发者ID:LIN-xr,项目名称:CUDA-programming,代码行数:62,代码来源:cvDSIFT.cpp

示例11: authenticate

//------------------------------------------------------------------------------
String PAN::authenticate(String CWD,String fileoutput){
	Point matchLoc;
	float percentage, threshold;
	float average = 0;
	int count = 0;
	Mat big_image;
	big_image = panimage.img->clone();//big image
	resize(big_image, big_image, Size(2000, 1500));
	if (!big_image.data)
	{
		std::cout << "Error reading images " << std::endl; return"";
	}
	Mat temp, temp1[3];
	if (big_image.channels() >= 2){
		cvtColor(big_image, temp, COLOR_BGR2GRAY);
	}
	//split(temp, temp1);
	big_image = temp.clone();
	/*img_1 = temp2.clone();
	resize(img_2, img_2, Size(600, 400));
	*///-- Step 1: Detect the keypoints using SURF Detector
	vector<KeyPoint> keypoints_big, keypoints_small;
	int minHessian = 200;
	//FeatureDetector * detector = new SURF();
	FastFeatureDetector detector;
	detector.detect(big_image, keypoints_big);
	cout << "big sift done\n\n";

	//-- Step 2: Calculate descriptors (feature vectors)
	int Threshl = 10;
	int Octaves = 3;
	//(pyramid layer) from which the keypoint has been extracted
	float PatternScales = 1.0f;
	//declare a variable BRISKD of the type cv::BRISK
	Mat descriptors_2, descriptors_small;
	BRISK BRISKD;

	//BRISKD.detect(img_1, keypoints_1);
	//BRISKD.detect(img_2, keypoints_2);
	BRISKD.compute(big_image, keypoints_big, descriptors_2);

	cout << "big brisk done\n\n";



	int i = 0;
	for ( i = 0; i < 7; i++){
		String path(CWD);
		// setting up input standard containers used for matching to
		String temp = "win1";
		temp = temp + char(i + 48) + ".jpg";
		path = path + temp;
		Mat find = imread(path, CV_LOAD_IMAGE_UNCHANGED);
		//cout << path << "\n\n";
		if (find.data == NULL){ break; }
		//templateMatch(*panimage.img, find, matchLoc, threshold, percentage);
		//-------------------------------------------------------------------------------------
		if (!find.data)
		{
			std::cout << "Error reading images " << std::endl; return "";
		}

		if (find.channels() >= 2){
			cvtColor(find,find, COLOR_BGR2GRAY);
		}


		//img_1 = temp2.clone();
		resize(find ,find, Size(1200, 600));
		//-- Step 1: Detect the keypoints using SURF Detector
		vector<KeyPoint>  keypoints_small;
		int minHessian = 200;
		detector.detect(find, keypoints_small);
		cout << "small sift done\n\n";

		//-- Step 2: Calculate descriptors (feature vectors)
		int Threshl = 10;
		int Octaves = 3;
		//(pyramid layer) from which the keypoint has been extracted
		float PatternScales = 1.0f;
		//declare a variable BRISKD of the type cv::BRISK
		Mat descriptors_small;
		//BRISKD.detect(img_1, keypoints_1);
		//BRISKD.detect(img_2, keypoints_2);
		BRISKD.compute(find, keypoints_small, descriptors_small);
		cout << "brisk done\n\n";

		//-------------------------------------------------------------------------------------
		

		//-- Step 3: Matching descriptor vectors using FLANN matcher
		//FlannBasedMatcher matcher;

		BFMatcher matcher;
		std::vector< DMatch > matches;
		matcher.match(descriptors_small, descriptors_2, matches);
		cv::Mat all_matches;
		drawMatches(find, keypoints_small, big_image, keypoints_big, matches, all_matches, cv::Scalar::all(-1), cv::Scalar::all(-1), vector<char>(), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
		
//.........这里部分代码省略.........
开发者ID:Pranavgulati,项目名称:VeriSmart,代码行数:101,代码来源:PAN.cpp

示例12: main

/**
 * @function main
 * @brief Main function
 */
int main( int argc, char** argv )
{
  if( argc != 3 )
  { readme(); return -1; }

  Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );
  Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );

  if( !img_object.data || !img_scene.data )
  { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

  //-- Step 1: Detect the keypoints using SURF Detector
  int minHessian = 100;

  SurfFeatureDetector detector( minHessian );

  std::vector<KeyPoint> keypoints_object, keypoints_scene;

  detector.detect( img_object, keypoints_object );
  detector.detect( img_scene, keypoints_scene );

  //-- Step 2: Calculate descriptors (feature vectors)
  SurfDescriptorExtractor extractor;

  Mat descriptors_object, descriptors_scene;

  extractor.compute( img_object, keypoints_object, descriptors_object );
  extractor.compute( img_scene, keypoints_scene, descriptors_scene );

  //-- Step 3: Matching descriptor vectors using brute force matcher
  BFMatcher matcher = BFMatcher(NORM_L2, false);
  std::vector< DMatch > matches;
  matcher.match( descriptors_object, descriptors_scene, matches );

  double max_dist = 0; double min_dist = 100;

  //-- Quick calculation of max and min distances between keypoints
  for( int i = 0; i < descriptors_object.rows; i++ )
  { double dist = matches[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
  }

  printf("-- Max dist : %f \n", max_dist );
  printf("-- Min dist : %f \n", min_dist );

  //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
  std::vector< DMatch > good_matches;

  for( int i = 0; i < descriptors_object.rows; i++ )
  { if( matches[i].distance < 3*min_dist )
    { good_matches.push_back( matches[i]); }
  }

  Mat img_matches;
  drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
               good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
               vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );


  //-- Localize the object from img_1 in img_2
  std::vector<Point2f> obj;
  std::vector<Point2f> scene;

  for( size_t i = 0; i < good_matches.size(); i++ )
  {
    //-- Get the keypoints from the good matches
    obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
    scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
  }

  Mat H = findHomography( obj, scene, RANSAC );

  //-- Get the corners from the image_1 ( the object to be "detected" )
  std::vector<Point2f> obj_corners(4);
  obj_corners[0] = Point(0,0); obj_corners[1] = Point( img_object.cols, 0 );
  obj_corners[2] = Point( img_object.cols, img_object.rows ); obj_corners[3] = Point( 0, img_object.rows );
  std::vector<Point2f> scene_corners(4);

  perspectiveTransform( obj_corners, scene_corners, H);


  //-- Draw lines between the corners (the mapped object in the scene - image_2 )
  Point2f offset( (float)img_object.cols, 0);
  //line( img_matches, scene_corners[0] + offset, scene_corners[1] + offset, Scalar(0, 255, 0), 4 );
  //line( img_matches, scene_corners[1] + offset, scene_corners[2] + offset, Scalar( 0, 255, 0), 4 );
  //line( img_matches, scene_corners[2] + offset, scene_corners[3] + offset, Scalar( 0, 255, 0), 4 );
  //line( img_matches, scene_corners[3] + offset, scene_corners[0] + offset, Scalar( 0, 255, 0), 4 );

  //-- Show detected matches
  imshow( "Good Matches & Object detection", img_matches );

  waitKey(0);

  return 0;
}
开发者ID:briantoth,项目名称:BeerPongButler,代码行数:100,代码来源:SURF_Homography.cpp

示例13: filterRANSAC

bool TrackerForProject::filterRANSAC(cv::Mat newFrame_, vector<Point2f> &corners, vector<Point2f> &nextCorners)
{
	int ransacReprojThreshold = 3;

	cv::Mat prev_(prevFrame_(position_));
	cv::Mat new_(newFrame_);

	// detecting keypoints
    SurfFeatureDetector detector;

	detector.detect(prev_, keypoints1);

    vector<KeyPoint> keypoints2;
    detector.detect(new_, keypoints2);

    // computing descriptors
    SurfDescriptorExtractor extractor;
    Mat descriptors1;
    extractor.compute(prev_, keypoints1, descriptors1);
    Mat descriptors2;
    extractor.compute(newFrame_, keypoints2, descriptors2);

    // matching descriptors
    BFMatcher matcher;
    vector<DMatch> matches;
    matcher.match(descriptors1, descriptors2, matches);
	
	std::cout << matches.size() << std::endl;

	vector<Point2f> points1, points2;

    // fill the arrays with the points
    for (int i = 0; i < matches.size(); i++)
    {
		points1.push_back(keypoints1[matches[i].queryIdx].pt);
    }
    for (int i = 0; i < matches.size(); i++)
    {
        points2.push_back(keypoints2[matches[i].trainIdx].pt);
    }

    Mat H = findHomography(Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold);

    Mat points1Projected;
    perspectiveTransform(Mat(points1), points1Projected, H);

	vector<KeyPoint> keypoints3;

	for(int i = 0; i < matches.size(); i++)
	{
		Point2f p1 = points1Projected.at<Point2f>(matches[i].queryIdx);
        Point2f p2 = keypoints2.at(matches[i].trainIdx).pt;
		if(((p2.x - p1.x) * (p2.x - p1.x) +
			(p2.y - p1.y) * (p2.y - p1.y) <= ransacReprojThreshold * ransacReprojThreshold)&& ((p2.x > position_.x - 10) 
			&& (p2.x < position_.x + position_.width + 10) && (p2.y > position_.y - 10) &&(p2.y < position_.y + position_.height + 10)) )
		{
			corners.push_back(keypoints1.at(matches[i].queryIdx).pt);
			nextCorners.push_back(keypoints2.at(matches[i].trainIdx).pt);

			keypoints3.push_back(keypoints2.at(matches[i].trainIdx));
		}		
	}

	for(int i = 0; i < corners.size(); i++)
	{
		corners[i].x += position_.x;
		corners[i].y += position_.y;
	}

	keypoints1 = keypoints3;

	for(int i = 0; i < keypoints1.size(); i++)
	{
		keypoints1[i].pt.x -= position_.x;
		keypoints1[i].pt.y -= position_.y;
	}

    if (keypoints1.empty())
    {
        return false;
    }

    return true;
}
开发者ID:grishin-sergei,项目名称:face-tracking,代码行数:84,代码来源:ForProject.cpp

示例14: main

int main( int argc, char** argv ) {
    
  if (argc != 2) { 
    cout << "Must provide directory argument.\n";
    return -1; 
  }


  vector<string> files;
  GetFilesInDirectory(files, argv[1]);

  int originalIndex = 0;
  int imgAindex = 0;
  int imgBindex = 0;

  std::set<int> indexesIncluded;
  std::map<int, vector<Mat,Mat>> knownRts;

  // Find first two images based on snavely method - set originalIndex, imgAindex, imgBindex

  indexesIncluded.insert(imgAindex);
  indexesIncluded.insert(imgBindex);

  while (indexesIncluded.size() != files.size()) {
      // find features in each image, find matches

      // findEssentialMatrix

      // recoverPose between A and B

      // convert R|t for B using original R|t value for A if we have it. (check knownRts map)

      // add new R|ts to the map for both images

      // triangulatePoints and add to cloud

      // find next B to use based on best match between remaining images (Snavely's method) and an included image.
  }



  // Create image
    string filepath1 = argv[1];
    image1 = Image(filepath1);
    string filepath2 = argv[2];
    image2 = Image(filepath2);
    
    // Detect keypoints
    FeatureDetectorSIFT siftDetector = FeatureDetectorSIFT();
    vector<KeypointDescriptor> keypoints1 = siftDetector.detect(image1);
    vector<KeypointDescriptor> keypoints2 = siftDetector.detect(image2);

    // Convert descriptors back to cv keypoints :(
    sift_keypoints1 = vector<KeyPoint>(keypoints1.begin(), keypoints1.end());
    sift_keypoints2 = vector<KeyPoint>(keypoints2.begin(), keypoints2.end());

    //STUFF FROM THE OPEN CV EXAMPLE BELOW
    // https://github.com/npinto/opencv/blob/master/samples/cpp/matcher_simple.cpp
    cv::Ptr<Feature2D> f2d = xfeatures2d::SIFT::create();
    
    Mat descriptors1, descriptors2; 
    f2d->compute(image1.matrix, sift_keypoints1, descriptors1);
    f2d->compute(image2.matrix, sift_keypoints2, descriptors2);
    
    BFMatcher matcher;
    matcher.match(descriptors1, descriptors2, matches);
    
    vector<Point2f> ptList1;
    vector<Point2f> ptList2;
    
    vector<int> queryIdxs;
    vector<int> trainIdxs;
    
    for (vector<DMatch>::size_type i = 0; i != matches.size(); i++){
        queryIdxs.push_back(matches[i].queryIdx);
        trainIdxs.push_back(matches[i].trainIdx);
    }
    
    KeyPoint::convert(sift_keypoints1, ptList1, queryIdxs);
    KeyPoint::convert(sift_keypoints2, ptList2, trainIdxs);
    
    vector<uchar> funOut;
    
    //press 8 for RANSAC
    Mat F = findFundamentalMat(ptList1, ptList2, 8, 3, .99, funOut);
    
    vector<int> funOutInt(funOut.begin(), funOut.end());
    
    for (vector<int>::size_type i = 0; i != funOut.size(); i++){
        if (funOutInt[i]==1){
            filteredMatches.push_back(matches[i]);
        }
    }
    
    namedWindow("filtered_matches", 1);
    drawMatches(image1.matrix, sift_keypoints1, image2.matrix, sift_keypoints2, emptyMatches, filtered_matches_matrix, matchColor, pointColor);
    imshow("filtered_matches", filtered_matches_matrix);

    cout << "^C to exit.\n";
    waitKey(0);
//.........这里部分代码省略.........
开发者ID:CarletonScenes,项目名称:Scene-Reconstruction,代码行数:101,代码来源:GenCloud.cpp


注:本文中的BFMatcher::match方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。