本文整理汇总了C++中ArtifactSet::MetaData方法的典型用法代码示例。如果您正苦于以下问题:C++ ArtifactSet::MetaData方法的具体用法?C++ ArtifactSet::MetaData怎么用?C++ ArtifactSet::MetaData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ArtifactSet
的用法示例。
在下文中一共展示了ArtifactSet::MetaData方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: plotAntennaFlagCounts
void PlotAction::plotAntennaFlagCounts(ArtifactSet &artifacts)
{
if(artifacts.AntennaFlagCountPlot() == 0)
throw BadUsageException("No antenna flag count plot in the artifact set");
if(artifacts.HasMetaData() && artifacts.MetaData()->HasAntenna1() && artifacts.MetaData()->HasAntenna2())
{
TimeFrequencyData &data = artifacts.ContaminatedData();
TimeFrequencyMetaDataCPtr meta = artifacts.MetaData();
artifacts.AntennaFlagCountPlot()->Add(data, meta);
} else {
AOLogger::Warn << "The strategy contains an action that makes an antenna plot, but the image set did not provide meta data.\n"
"Plot will not be made.\n";
}
}
示例2: plotFrequencyPower
void PlotAction::plotFrequencyPower(ArtifactSet &artifacts)
{
if(artifacts.FrequencyPowerPlot() == 0)
throw BadUsageException("No frequency power plot in the artifact set");
TimeFrequencyData &data = artifacts.ContaminatedData();
TimeFrequencyMetaDataCPtr meta = artifacts.MetaData();
artifacts.FrequencyPowerPlot()->Add(data, meta);
}
示例3: plotAntennaFlagCounts
void PlotAction::plotAntennaFlagCounts(ArtifactSet &artifacts)
{
if(artifacts.AntennaFlagCountPlot() == 0)
throw BadUsageException("No antenna flag count plot in the artifact set");
TimeFrequencyData &data = artifacts.ContaminatedData();
TimeFrequencyMetaDataCPtr meta = artifacts.MetaData();
artifacts.AntennaFlagCountPlot()->Add(data, meta);
}
示例4: plotSpectrumPerBaseline
void PlotAction::plotSpectrumPerBaseline(ArtifactSet &artifacts)
{
if(artifacts.FrequencyPowerPlot() == 0)
throw BadUsageException("No frequency power plot in the artifact set");
TimeFrequencyData &data = artifacts.ContaminatedData();
TimeFrequencyMetaDataCPtr meta = artifacts.MetaData();
artifacts.FrequencyPowerPlot()->SetLogYAxis(_logYAxis);
artifacts.FrequencyPowerPlot()->StartNewLine(meta->Antenna1().name + " x " + meta->Antenna2().name);
artifacts.FrequencyPowerPlot()->Add(data, meta);
}
示例5: PerformFFTSincOperation
void TimeConvolutionAction::PerformFFTSincOperation(ArtifactSet &artifacts, Image2DPtr real, Image2DPtr imag) const
{
fftw_complex
*fftIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * real->Width()),
*fftOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * real->Width());
// FFTW plan routines are not thread safe, so lock.
boost::mutex::scoped_lock lock(artifacts.IOMutex());
fftw_plan
fftPlanForward = fftw_plan_dft_1d(real->Width(), fftIn, fftOut, FFTW_FORWARD, FFTW_MEASURE),
fftPlanBackward = fftw_plan_dft_1d(real->Width(), fftIn, fftOut, FFTW_BACKWARD, FFTW_MEASURE);
lock.unlock();
const size_t width = real->Width();
const BandInfo band = artifacts.MetaData()->Band();
for(unsigned y=0;y<real->Height();++y)
{
const numl_t sincScale = ActualSincScaleInSamples(artifacts, band.channels[y].frequencyHz);
const numl_t limitFrequency = (numl_t) width / sincScale;
if(y == real->Height()/2)
{
AOLogger::Debug << "Horizontal sinc scale: " << sincScale << " (filter scale: " << Angle::ToString(ActualSincScaleAsRaDecDist(artifacts, band.channels[y].frequencyHz)) << ")\n";
}
if(sincScale > 1.0)
{
for(unsigned x=0;x<width;++x)
{
fftIn[x][0] = real->Value(x, y);
fftIn[x][1] = imag->Value(x, y);
}
fftw_execute_dft(fftPlanForward, fftIn, fftOut);
size_t filterIndexSize = (limitFrequency > 1.0) ? (size_t) ceil(limitFrequency/2.0) : 1;
// Remove the high frequencies [filterIndexSize : n-filterIndexSize]
for(size_t f=filterIndexSize;f<width - filterIndexSize;++f)
{
fftOut[f][0] = 0.0;
fftOut[f][1] = 0.0;
}
fftw_execute_dft(fftPlanBackward, fftOut, fftIn);
const double n = width;
for(unsigned x=0;x<width;++x)
{
real->SetValue(x, y, fftIn[x][0] / n);
imag->SetValue(x, y, fftIn[x][1] / n);
}
}
}
fftw_free(fftIn);
fftw_free(fftOut);
}
示例6: Perform
void ImagerAction::Perform(ArtifactSet &artifacts, ProgressListener &progress)
{
boost::mutex::scoped_lock lock(_imagerMutex);
UVImager *imager = artifacts.Imager();
if(imager == 0)
throw BadUsageException("No imager available to create image.");
TimeFrequencyData &data = artifacts.ContaminatedData();
TimeFrequencyMetaDataCPtr metaData = artifacts.MetaData();
if(data.PolarisationCount() > 1)
{
TimeFrequencyData *tmp = data.CreateTFData(StokesIPolarisation);
data = *tmp;
delete tmp;
}
bool btPlaneImager = true;
if(btPlaneImager)
{
typedef double ImagerNumeric;
BaselineTimePlaneImager<ImagerNumeric> btImager;
BandInfo band = metaData->Band();
Image2DCPtr
inputReal = data.GetRealPart(),
inputImag = data.GetImaginaryPart();
Mask2DCPtr mask = data.GetSingleMask();
size_t width = inputReal->Width();
for(size_t t=0;t!=width;++t)
{
UVW uvw = metaData->UVW()[t];
size_t channelCount = inputReal->Height();
std::vector<std::complex<ImagerNumeric> > data(channelCount);
for(size_t ch=0;ch!=channelCount;++ch) {
if(mask->Value(t, ch))
data[ch] = std::complex<ImagerNumeric>(0.0, 0.0);
else
data[ch] = std::complex<ImagerNumeric>(inputReal->Value(t, ch), inputImag->Value(t, ch));
}
btImager.Image(uvw.u, uvw.v, uvw.w, band.channels[0].frequencyHz, band.channels[1].frequencyHz-band.channels[0].frequencyHz, channelCount, &(data[0]), imager->FTReal());
}
} else {
progress.OnStartTask(*this, 0, 1, "Imaging baseline");
for(size_t y=0;y<data.ImageHeight();++y)
{
imager->Image(data, metaData, y);
progress.OnProgress(*this, y, data.ImageHeight());
}
progress.OnEndTask(*this);
}
}
示例7: plotBaselineRMS
void PlotAction::plotBaselineRMS(ArtifactSet &artifacts)
{
if(artifacts.PolarizationStatistics() == 0)
throw BadUsageException("No polarization statistics in the artifact set");
TimeFrequencyData &data = artifacts.ContaminatedData();
TimeFrequencyMetaDataCPtr metaData = artifacts.MetaData();
double rms = 0.0;
for(unsigned i=0;i<data.PolarisationCount();++i)
{
TimeFrequencyData *polarisation = data.CreateTFDataFromPolarisationIndex(i);
Mask2DCPtr mask = polarisation->GetSingleMask();
for(unsigned j=0;j<polarisation->ImageCount();++j)
{
Image2DCPtr image = polarisation->GetImage(j);
rms += ThresholdTools::RMS(image, mask);
}
delete polarisation;
}
rms /= data.PolarisationCount();
;
AOLogger::Info << "RMS of " << metaData->Antenna1().name << " x " << metaData->Antenna2().name << ": "
<< rms << '\n';
}
示例8: Perform
void ForEachBaselineAction::Perform(ArtifactSet &artifacts, ProgressListener &progress)
{
if(!artifacts.HasImageSet())
{
progress.OnStartTask(*this, 0, 1, "For each baseline (no image set)");
progress.OnEndTask(*this);
AOLogger::Warn <<
"I executed a ForEachBaselineAction without an active imageset: something is\n"
"likely wrong. Check your strategy and the input files.\n";
} else if(_selection == Current)
{
ActionBlock::Perform(artifacts, progress);
} else
{
ImageSet *imageSet = artifacts.ImageSet();
MSImageSet *msImageSet = dynamic_cast<MSImageSet*>(imageSet);
if(msImageSet != 0)
{
// Check memory usage
ImageSetIndex *tempIndex = msImageSet->StartIndex();
size_t timeStepCount = msImageSet->ObservationTimesVector(*tempIndex).size();
delete tempIndex;
size_t channelCount = msImageSet->GetBandInfo(0).channels.size();
size_t estMemorySizePerThread = 8/*bp complex*/ * 4 /*polarizations*/ * timeStepCount * channelCount * 3 /* approx copies of the data that will be made in memory*/;
AOLogger::Debug << "Estimate of memory each thread will use: " << estMemorySizePerThread/(1024*1024) << " MB.\n";
size_t compThreadCount = _threadCount;
if(compThreadCount > 0) --compThreadCount;
if(estMemorySizePerThread * compThreadCount > 12ul*1024ul*1024ul*1024ul)
{
size_t maxThreads = (12ul * 1024ul * 1024ul * 1024ul) / estMemorySizePerThread;
if(maxThreads < 1) maxThreads = 1;
AOLogger::Warn <<
"WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING!\n"
"This measurement set is TOO LARGE to be processed with " << _threadCount << " threads!\n" <<
_threadCount << " threads would require " << ((estMemorySizePerThread*compThreadCount)/(1024*1024)) << " MB of memory approximately.\n"
"Number of threads that will actually be used: " << maxThreads << "\n"
"This might hurt performance a lot!\n\n";
_threadCount = maxThreads;
}
}
if(!_antennaeToSkip.empty())
{
AOLogger::Debug << "The following antenna's will be skipped: ";
for(std::set<size_t>::const_iterator i=_antennaeToSkip.begin();i!=_antennaeToSkip.end(); ++i)
AOLogger::Debug << (*i) << ' ';
AOLogger::Debug <<'\n';
}
if(!_antennaeToInclude.empty())
{
AOLogger::Debug << "Only the following antenna's will be included: ";
for(std::set<size_t>::const_iterator i=_antennaeToInclude.begin();i!=_antennaeToInclude.end(); ++i)
AOLogger::Debug << (*i) << ' ';
AOLogger::Debug <<'\n';
}
if(artifacts.MetaData() != 0)
{
_hasInitAntennae = true;
if(artifacts.MetaData()->HasAntenna1())
_initAntenna1 = artifacts.MetaData()->Antenna1();
else
_hasInitAntennae = false;
if(artifacts.MetaData()->HasAntenna2())
_initAntenna2 = artifacts.MetaData()->Antenna2();
else
_hasInitAntennae = false;
}
_artifacts = &artifacts;
_initPartIndex = 0;
_finishedBaselines = false;
_baselineCount = 0;
_baselineProgress = 0;
_nextIndex = 0;
// Count the baselines that are to be processed
ImageSetIndex *iteratorIndex = imageSet->StartIndex();
while(iteratorIndex->IsValid())
{
if(IsBaselineSelected(*iteratorIndex))
++_baselineCount;
iteratorIndex->Next();
}
delete iteratorIndex;
AOLogger::Debug << "Will process " << _baselineCount << " baselines.\n";
// Initialize thread data and threads
_loopIndex = imageSet->StartIndex();
_progressTaskNo = new int[_threadCount];
_progressTaskCount = new int[_threadCount];
progress.OnStartTask(*this, 0, 1, "Initializing");
boost::thread_group threadGroup;
ReaderFunction reader(*this);
threadGroup.create_thread(reader);
size_t mathThreads = mathThreadCount();
for(unsigned i=0;i<mathThreads;++i)
{
PerformFunction function(*this, progress, i);
//.........这里部分代码省略.........
示例9: Perform
void ForEachBaselineAction::Perform(ArtifactSet &artifacts, ProgressListener &progress)
{
if(!artifacts.HasImageSet())
{
progress.OnStartTask(*this, 0, 1, "For each baseline (no image set)");
progress.OnEndTask(*this);
Logger::Warn <<
"I executed a ForEachBaselineAction without an active imageset: something is\n"
"likely wrong. Check your strategy and the input files.\n";
} else if(_selection == Current)
{
ActionBlock::Perform(artifacts, progress);
} else
{
ImageSet& imageSet = artifacts.ImageSet();
MSImageSet* msImageSet = dynamic_cast<MSImageSet*>(&imageSet);
if(msImageSet != 0)
{
// Check memory usage
std::unique_ptr<ImageSetIndex> tempIndex = msImageSet->StartIndex();
size_t timeStepCount = msImageSet->ObservationTimesVector(*tempIndex).size();
tempIndex.reset();
size_t channelCount = msImageSet->GetBandInfo(0).channels.size();
double estMemorySizePerThread =
8.0/*bp complex*/ * 4.0 /*polarizations*/ *
double(timeStepCount) * double(channelCount) *
3.0 /* approx copies of the data that will be made in memory*/;
Logger::Debug << "Estimate of memory each thread will use: " << memToStr(estMemorySizePerThread) << ".\n";
size_t compThreadCount = _threadCount;
if(compThreadCount > 0) --compThreadCount;
int64_t memSize = System::TotalMemory();
Logger::Debug << "Detected " << memToStr(memSize) << " of system memory.\n";
if(estMemorySizePerThread * double(compThreadCount) > memSize)
{
size_t maxThreads = size_t(memSize / estMemorySizePerThread);
if(maxThreads < 1) maxThreads = 1;
Logger::Warn <<
"This measurement set is TOO LARGE to be processed with " << _threadCount << " threads!\n" <<
_threadCount << " threads would require " << memToStr(estMemorySizePerThread*compThreadCount) << " of memory approximately.\n"
"Number of threads that will actually be used: " << maxThreads << "\n"
"This might hurt performance a lot!\n\n";
_threadCount = maxThreads;
}
}
if(dynamic_cast<FilterBankSet*>(&imageSet) != nullptr && _threadCount != 1)
{
Logger::Info << "This is a Filterbank set -- disabling multi-threading\n";
_threadCount = 1;
}
if(!_antennaeToSkip.empty())
{
Logger::Debug << "The following antennas will be skipped: ";
for(std::set<size_t>::const_iterator i=_antennaeToSkip.begin();i!=_antennaeToSkip.end(); ++i)
Logger::Debug << (*i) << ' ';
Logger::Debug <<'\n';
}
if(!_antennaeToInclude.empty())
{
Logger::Debug << "Only the following antennas will be included: ";
for(std::set<size_t>::const_iterator i=_antennaeToInclude.begin();i!=_antennaeToInclude.end(); ++i)
Logger::Debug << (*i) << ' ';
Logger::Debug <<'\n';
}
if(artifacts.MetaData() != 0)
{
_hasInitAntennae = true;
if(artifacts.MetaData()->HasAntenna1())
_initAntenna1 = artifacts.MetaData()->Antenna1();
else
_hasInitAntennae = false;
if(artifacts.MetaData()->HasAntenna2())
_initAntenna2 = artifacts.MetaData()->Antenna2();
else
_hasInitAntennae = false;
}
_artifacts = &artifacts;
_initPartIndex = 0;
_finishedBaselines = false;
_baselineCount = 0;
_baselineProgress = 0;
_nextIndex = 0;
// Count the baselines that are to be processed
std::unique_ptr<ImageSetIndex> iteratorIndex = imageSet.StartIndex();
while(iteratorIndex->IsValid())
{
if(IsBaselineSelected(*iteratorIndex))
++_baselineCount;
iteratorIndex->Next();
}
iteratorIndex.reset();
Logger::Debug << "Will process " << _baselineCount << " baselines.\n";
// Initialize thread data and threads
_loopIndex = imageSet.StartIndex();
_progressTaskNo = new int[_threadCount];
//.........这里部分代码省略.........