本文整理汇总了C++中ArSensorReading::getSensorTh方法的典型用法代码示例。如果您正苦于以下问题:C++ ArSensorReading::getSensorTh方法的具体用法?C++ ArSensorReading::getSensorTh怎么用?C++ ArSensorReading::getSensorTh使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ArSensorReading
的用法示例。
在下文中一共展示了ArSensorReading::getSensorTh方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: sonar_stop
void sonar_stop(ArRobot* robot)
{
int numSonar; //Number of sonar on the robot
int i; //Counter for looping
//int j;
numSonar = robot->getNumSonar(); //Get number of sonar
ArSensorReading* sonarReading; //To hold each reading
//for (j = 1; j < 6; j++)
//{
robot->setVel(200); //Set translational velocity to 200 mm/s
for (;;)
{
for (i = 0; i < numSonar; i++) //Loop through sonar
{
sonarReading = robot->getSonarReading(i); //Get each sonar reading
cout << "Sonar reading " << i << " = " << sonarReading->getRange()
<< " Angle " << i << " = " << sonarReading->getSensorTh() << "\n";
//getchar();
if (sonarReading->getSensorTh() > -90 && sonarReading->getSensorTh() < 90 && sonarReading->getRange() < 500)
robot->setVel(0);
}
}
//<< " Angle " << i << " = " <<
//printf("Sonar Reading", i, "=",sonarReading)
//robot->unlock(); //Lock robot during set up 18
//robot->comInt(ArCommands::ENABLE, 1); //Turn on the motors 19
//robot->setVel(200); //Set translational velocity to 200 mm/s
//if (sonarReading[1] < 500)
//{
//robot->setRotVel(0);
//}
}
示例2: getSonarsReadings
/*-------------------------------------------------------------
getSonarsReadings
-------------------------------------------------------------*/
void CActivMediaRobotBase::getSonarsReadings( bool &thereIsObservation, CObservationRange &obs )
{
#if MRPT_HAS_ARIA
ASSERTMSG_(THE_ROBOT!=NULL, "Robot is not connected")
THE_ROBOT->lock();
obs.minSensorDistance = 0;
obs.maxSensorDistance = 30;
int i,N =THE_ROBOT->getNumSonar();
obs.sensorLabel = "BASE_SONARS";
obs.sensorConeApperture = DEG2RAD( 30 );
obs.timestamp = system::now();
obs.sensedData.clear();
unsigned int time_cnt = THE_ROBOT->getCounter();
if (m_lastTimeSonars == time_cnt)
{
thereIsObservation = false;
THE_ROBOT->unlock();
return;
}
for (i=0;i<N;i++)
{
ArSensorReading *sr = THE_ROBOT->getSonarReading(i);
if (sr->getIgnoreThisReading()) continue;
// if (!sr->isNew(time_cnt))
// {
//thereIsObservation = false;
//break;
// }
obs.sensedData.push_back( CObservationRange::TMeasurement() );
CObservationRange::TMeasurement & newObs = obs.sensedData.back();
newObs.sensorID = i;
newObs.sensorPose.x = 0.001*sr->getSensorX();
newObs.sensorPose.y = 0.001*sr->getSensorY();
newObs.sensorPose.z = 0; //0.001*sr->getSensorZ();
newObs.sensorPose.yaw = DEG2RAD( sr->getSensorTh() );
newObs.sensorPose.pitch = 0;
newObs.sensorPose.roll = 0;
newObs.sensedDistance = 0.001*THE_ROBOT->getSonarRange(i);
}
THE_ROBOT->unlock();
thereIsObservation = !obs.sensedData.empty();
// keep the last time:
if (thereIsObservation)
m_lastTimeSonars = time_cnt;
#else
MRPT_UNUSED_PARAM(thereIsObservation); MRPT_UNUSED_PARAM(obs);
THROW_EXCEPTION("MRPT has been compiled with 'MRPT_BUILD_ARIA'=OFF, so this class cannot be used.");
#endif
}
示例3: processReadings
void ArLaserFilter::processReadings(void)
{
myLaser->lockDevice();
selfLockDevice();
const std::list<ArSensorReading *> *rdRawReadings;
std::list<ArSensorReading *>::const_iterator rdIt;
if ((rdRawReadings = myLaser->getRawReadings()) == NULL)
{
selfUnlockDevice();
myLaser->unlockDevice();
return;
}
size_t rawSize = myRawReadings->size();
size_t rdRawSize = myLaser->getRawReadings()->size();
while (rawSize < rdRawSize)
{
myRawReadings->push_back(new ArSensorReading);
rawSize++;
}
// set where the pose was taken
myCurrentBuffer.setPoseTaken(
myLaser->getCurrentRangeBuffer()->getPoseTaken());
myCurrentBuffer.setEncoderPoseTaken(
myLaser->getCurrentRangeBuffer()->getEncoderPoseTaken());
std::list<ArSensorReading *>::iterator it;
ArSensorReading *rdReading;
ArSensorReading *reading;
#ifdef DEBUGRANGEFILTER
FILE *file = NULL;
file = ArUtil::fopen("/mnt/rdsys/tmp/filter", "w");
#endif
std::map<int, ArSensorReading *> readingMap;
int numReadings = 0;
// first pass to copy the readings and put them into a map
for (rdIt = rdRawReadings->begin(), it = myRawReadings->begin();
rdIt != rdRawReadings->end() && it != myRawReadings->end();
rdIt++, it++)
{
rdReading = (*rdIt);
reading = (*it);
*reading = *rdReading;
readingMap[numReadings] = reading;
numReadings++;
}
char buf[1024];
int i;
int j;
ArSensorReading *lastAddedReading = NULL;
// now walk through the readings to filter them
for (i = 0; i < numReadings; i++)
{
reading = readingMap[i];
// if we're ignoring this reading then just get on with life
if (reading->getIgnoreThisReading())
continue;
if (myMaxRange >= 0 && reading->getRange() > myMaxRange)
{
reading->setIgnoreThisReading(true);
continue;
}
if (lastAddedReading != NULL)
{
if (lastAddedReading->getPose().findDistanceTo(reading->getPose()) < 50)
{
#ifdef DEBUGRANGEFILTER
if (file != NULL)
fprintf(file, "%.1f too close from last %6.0f\n",
reading->getSensorTh(),
lastAddedReading->getPose().findDistanceTo(
reading->getPose()));
#endif
reading->setIgnoreThisReading(true);
continue;
}
#ifdef DEBUGRANGEFILTER
else if (file != NULL)
fprintf(file, "%.1f from last %6.0f\n",
reading->getSensorTh(),
lastAddedReading->getPose().findDistanceTo(
reading->getPose()));
#endif
}
//.........这里部分代码省略.........
示例4: laserProcessReadings
void ArLaser::laserProcessReadings(void)
{
// if we have no readings... don't do anything
if (myRawReadings == NULL || myRawReadings->begin() == myRawReadings->end())
return;
std::list<ArSensorReading *>::iterator sensIt;
ArSensorReading *sReading;
double x, y;
double lastX = 0.0, lastY = 0.0;
//unsigned int i = 0;
ArTime len;
len.setToNow();
bool clean;
if (myCumulativeCleanInterval <= 0 ||
(myCumulativeLastClean.mSecSince() >
myCumulativeCleanInterval))
{
myCumulativeLastClean.setToNow();
clean = true;
}
else
{
clean = false;
}
myCurrentBuffer.setPoseTaken(myRawReadings->front()->getPoseTaken());
myCurrentBuffer.setEncoderPoseTaken(
myRawReadings->front()->getEncoderPoseTaken());
myCurrentBuffer.beginRedoBuffer();
// walk the buffer of all the readings and see if we want to add them
for (sensIt = myRawReadings->begin();
sensIt != myRawReadings->end();
++sensIt)
{
sReading = (*sensIt);
// if we have ignore readings then check them here
if (!myIgnoreReadings.empty() &&
(myIgnoreReadings.find(
(int) ceil(sReading->getSensorTh())) !=
myIgnoreReadings.end()) ||
myIgnoreReadings.find(
(int) floor(sReading->getSensorTh())) !=
myIgnoreReadings.end())
sReading->setIgnoreThisReading(true);
// see if the reading is valid
if (sReading->getIgnoreThisReading())
continue;
// if we have a max range then check it here...
if (myMaxRange != 0 &&
sReading->getRange() > myMaxRange)
{
sReading->setIgnoreThisReading(true);
}
// see if the reading is valid... this is set up this way so that
// max range readings can cancel out other readings, but will
// still be ignored other than that... ones ignored for other
// reasons were skipped above
if (sReading->getIgnoreThisReading())
{
internalProcessReading(sReading->getX(), sReading->getY(),
sReading->getRange(), clean, true);
continue;
}
// get our coords
x = sReading->getX();
y = sReading->getY();
// see if we're checking on the filter near dist... if we are
// and the reading is a good one we'll check the cumulative
// buffer
if (myMinDistBetweenCurrentSquared > 0.0000001)
{
// see where the last reading was
//squaredDist = (x-lastX)*(x-lastX) + (y-lastY)*(y-lastY);
// see if the reading is far enough from the last reading
if (ArMath::squaredDistanceBetween(x, y, lastX, lastY) >
myMinDistBetweenCurrentSquared)
{
lastX = x;
lastY = y;
// since it was a good reading, see if we should toss it in
// the cumulative buffer...
internalProcessReading(x, y, sReading->getRange(), clean, false);
/* we don't do this part anymore since it wound up leaving
// too many things not really tehre... if its outside of our
// sensor angle to use to filter then don't let this one
// clean (ArMath::fabs(sReading->getSensorTh()) > 50)
// filterAddAndCleanCumulative(x, y, false); else*/
}
// it wasn't far enough, skip this one and go to the next one
else
//.........这里部分代码省略.........
示例5: sonarPrinter
void sonarPrinter(void)
{
fprintf(stdout, "in sonarPrinter()\n"); fflush(stdout);
double scale = (double)half_size / (double)sonar.getMaxRange();
/*
ArSonarDevice *sd;
std::list<ArPoseWithTime *>::iterator it;
std::list<ArPoseWithTime *> *readings;
ArPose *pose;
sd = (ArSonarDevice *)robot->findRangeDevice("sonar");
if (sd != NULL)
{
sd->lockDevice();
readings = sd->getCurrentBuffer();
if (readings != NULL)
{
for (it = readings->begin(); it != readings->end(); ++it)
{
pose = (*it);
//pose->log();
}
}
sd->unlockDevice();
}
*/
double range;
double angle;
/*
* example to show how to find closest readings within polar sections
*/
printf("Closest readings within polar sections:\n");
double start_angle = -45;
double end_angle = 45;
range = sonar.currentReadingPolar(start_angle, end_angle, &angle);
printf(" front quadrant: %5.0f ", range);
//if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
#if defined(VISP_HAVE_X11) || defined (VISP_HAVE_GDI)
//if (isInitialized && range != sonar.getMaxRange())
if (isInitialized && std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
{
double x = range * cos(vpMath::rad(angle)); // position of the obstacle in the sensor frame
double y = range * sin(vpMath::rad(angle));
// Conversion in pixels so that the robot frame is in the middle of the image
double j = -y * scale + half_size; // obstacle position
double i = -x * scale + half_size;
vpDisplay::display(I);
vpDisplay::displayLine(I, half_size, half_size, 0, 0, vpColor::red, 5);
vpDisplay::displayLine(I, half_size, half_size, 0, 2*half_size-1, vpColor::red, 5);
vpDisplay::displayLine(I, half_size, half_size, i, j, vpColor::green, 3);
vpDisplay::displayCross(I, i, j, 7, vpColor::blue);
}
#endif
range = sonar.currentReadingPolar(-135, -45, &angle);
printf(" right quadrant: %5.0f ", range);
//if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
range = sonar.currentReadingPolar(45, 135, &angle);
printf(" left quadrant: %5.0f ", range);
//if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
range = sonar.currentReadingPolar(-135, 135, &angle);
printf(" back quadrant: %5.0f ", range);
//if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
/*
* example to show how get all sonar sensor data
*/
ArSensorReading *reading;
for (int sensor = 0; sensor < robot->getNumSonar(); sensor++)
{
reading = robot->getSonarReading(sensor);
if (reading != NULL)
{
angle = reading->getSensorTh();
range = reading->getRange();
double sx = reading->getSensorX(); // position of the sensor in the robot frame
double sy = reading->getSensorY();
double ox = range * cos(vpMath::rad(angle)); // position of the obstacle in the sensor frame
double oy = range * sin(vpMath::rad(angle));
double x = sx + ox; // position of the obstacle in the robot frame
//.........这里部分代码省略.........
示例6: processReadings
void ArLaserFilter::processReadings(void)
{
myLaser->lockDevice();
selfLockDevice();
const std::list<ArSensorReading *> *rdRawReadings;
std::list<ArSensorReading *>::const_iterator rdIt;
if ((rdRawReadings = myLaser->getRawReadings()) == NULL)
{
selfUnlockDevice();
myLaser->unlockDevice();
return;
}
size_t rawSize = myRawReadings->size();
size_t rdRawSize = myLaser->getRawReadings()->size();
while (rawSize < rdRawSize)
{
myRawReadings->push_back(new ArSensorReading);
rawSize++;
}
// set where the pose was taken
myCurrentBuffer.setPoseTaken(
myLaser->getCurrentRangeBuffer()->getPoseTaken());
myCurrentBuffer.setEncoderPoseTaken(
myLaser->getCurrentRangeBuffer()->getEncoderPoseTaken());
std::list<ArSensorReading *>::iterator it;
ArSensorReading *rdReading;
ArSensorReading *reading;
#ifdef DEBUGRANGEFILTER
FILE *file = NULL;
//file = ArUtil::fopen("/mnt/rdsys/tmp/filter", "w");
file = ArUtil::fopen("/tmp/filter", "w");
#endif
std::map<int, ArSensorReading *> readingMap;
int numReadings = 0;
// first pass to copy the readings and put them into a map
for (rdIt = rdRawReadings->begin(), it = myRawReadings->begin();
rdIt != rdRawReadings->end() && it != myRawReadings->end();
rdIt++, it++)
{
rdReading = (*rdIt);
reading = (*it);
*reading = *rdReading;
readingMap[numReadings] = reading;
numReadings++;
}
// if we're not doing any filtering, just short circuit out now
if (myAllFactor <= 0 && myAnyFactor <= 0 && myAnyMinRange <= 0)
{
laserProcessReadings();
copyReadingCount(myLaser);
selfUnlockDevice();
myLaser->unlockDevice();
#ifdef DEBUGRANGEFILTER
if (file != NULL)
fclose(file);
#endif
return;
}
char buf[1024];
int i;
int j;
//ArSensorReading *lastAddedReading = NULL;
// now walk through the readings to filter them
for (i = 0; i < numReadings; i++)
{
reading = readingMap[i];
// if we're ignoring this reading then just get on with life
if (reading->getIgnoreThisReading())
continue;
/* Taking this check out since the base class does it now and if
* it gets marked ignore now it won't get used for clearing
* cumulative readings
if (myMaxRange >= 0 && reading->getRange() > myMaxRange)
{
#ifdef DEBUGRANGEFILTER
if (file != NULL)
fprintf(file, "%.1f beyond max range at %d\n",
reading->getSensorTh(), reading->getRange());
#endif
reading->setIgnoreThisReading(true);
continue;
}
//.........这里部分代码省略.........