本文整理汇总了C++中ADFun::ForSparseJac方法的典型用法代码示例。如果您正苦于以下问题:C++ ADFun::ForSparseJac方法的具体用法?C++ ADFun::ForSparseJac怎么用?C++ ADFun::ForSparseJac使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ADFun
的用法示例。
在下文中一共展示了ADFun::ForSparseJac方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: rev_sparse_hes
/*!
Link from user_atomic to forward sparse Jacobian
\copydetails atomic_base::rev_sparse_hes
*/
virtual bool rev_sparse_hes(
const vector<bool>& vx ,
const vector<bool>& s ,
vector<bool>& t ,
size_t q ,
const vector< std::set<size_t> >& r ,
const vector< std::set<size_t> >& u ,
vector< std::set<size_t> >& v )
{ size_t n = v.size();
size_t m = u.size();
CPPAD_ASSERT_UNKNOWN( r.size() == v.size() );
CPPAD_ASSERT_UNKNOWN( s.size() == m );
CPPAD_ASSERT_UNKNOWN( t.size() == n );
bool ok = true;
bool transpose = true;
std::set<size_t>::const_iterator itr;
// compute sparsity pattern for T(x) = S(x) * f'(x)
t = f_.RevSparseJac(1, s);
# ifndef NDEBUG
for(size_t j = 0; j < n; j++)
CPPAD_ASSERT_UNKNOWN( vx[j] || ! t[j] )
# endif
// V(x) = f'(x)^T * g''(y) * f'(x) * R + g'(y) * f''(x) * R
// U(x) = g''(y) * f'(x) * R
// S(x) = g'(y)
// compute sparsity pattern for A(x) = f'(x)^T * U(x)
vector< std::set<size_t> > a(n);
a = f_.RevSparseJac(q, u, transpose);
// set version of s
vector< std::set<size_t> > set_s(1);
CPPAD_ASSERT_UNKNOWN( set_s[0].empty() );
size_t i;
for(i = 0; i < m; i++)
if( s[i] )
set_s[0].insert(i);
// compute sparsity pattern for H(x) = (S(x) * F)''(x) * R
// (store it in v)
f_.ForSparseJac(q, r);
v = f_.RevSparseHes(q, set_s, transpose);
// compute sparsity pattern for V(x) = A(x) + H(x)
for(i = 0; i < n; i++)
{ for(itr = a[i].begin(); itr != a[i].end(); itr++)
{ size_t j = *itr;
CPPAD_ASSERT_UNKNOWN( j < q );
v[i].insert(j);
}
}
// no longer need the forward mode sparsity pattern
// (have to reconstruct them every time)
f_.size_forward_set(0);
return ok;
}
示例2: forward
/*!
Link from user_atomic to forward mode
\copydetails atomic_base::forward
*/
virtual bool forward(
size_t p ,
size_t q ,
const vector<bool>& vx ,
vector<bool>& vy ,
const vector<Base>& tx ,
vector<Base>& ty )
{
CPPAD_ASSERT_UNKNOWN( f_.size_var() > 0 );
CPPAD_ASSERT_UNKNOWN( tx.size() % (q+1) == 0 );
CPPAD_ASSERT_UNKNOWN( ty.size() % (q+1) == 0 );
size_t n = tx.size() / (q+1);
size_t m = ty.size() / (q+1);
bool ok = true;
size_t i, j;
// 2DO: test both forward and reverse vy information
if( vx.size() > 0 )
{ //Compute Jacobian sparsity pattern.
vector< std::set<size_t> > s(m);
if( n <= m )
{ vector< std::set<size_t> > r(n);
for(j = 0; j < n; j++)
r[j].insert(j);
s = f_.ForSparseJac(n, r);
}
else
{ vector< std::set<size_t> > r(m);
for(i = 0; i < m; i++)
r[i].insert(i);
s = f_.RevSparseJac(m, r);
}
std::set<size_t>::const_iterator itr;
for(i = 0; i < m; i++)
{ vy[i] = false;
for(itr = s[i].begin(); itr != s[i].end(); itr++)
{ j = *itr;
assert( j < n );
// y[i] depends on the value of x[j]
vy[i] |= vx[j];
}
}
}
ty = f_.Forward(q, tx);
// no longer need the Taylor coefficients in f_
// (have to reconstruct them every time)
size_t c = 0;
size_t r = 0;
f_.capacity_order(c, r);
return ok;
}
示例3: for_sparse_jac
/*!
Link from user_atomic to forward sparse Jacobian
\copydetails atomic_base::for_sparse_jac
*/
virtual bool for_sparse_jac(
size_t q ,
const vector<bool>& r ,
vector<bool>& s )
{
bool ok = true;
s = f_.ForSparseJac(q, r);
// no longer need the forward mode sparsity pattern
// (have to reconstruct them every time)
f_.size_forward_bool(0);
return ok;
}
示例4: old_usead_1
bool old_usead_1(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// --------------------------------------------------------------------
// Create the ADFun<doulbe> r_
create_r();
// --------------------------------------------------------------------
// Create the function f(x)
//
// domain space vector
size_t n = 1;
double x0 = 0.5;
vector< AD<double> > ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
vector< AD<double> > ay(m);
// call user function and store reciprocal(x) in au[0]
vector< AD<double> > au(m);
size_t id = 0; // not used
reciprocal(id, ax, au); // u = 1 / x
// call user function and store reciprocal(u) in ay[0]
reciprocal(id, au, ay); // y = 1 / u = x
// create f: x -> y and stop tape recording
ADFun<double> f;
f.Dependent(ax, ay); // f(x) = x
// --------------------------------------------------------------------
// Check function value results
//
// check function value
double check = x0;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
// check zero order forward mode
size_t q;
vector<double> x_q(n), y_q(m);
q = 0;
x_q[0] = x0;
y_q = f.Forward(q, x_q);
ok &= NearEqual(y_q[0] , check, eps, eps);
// check first order forward mode
q = 1;
x_q[0] = 1;
y_q = f.Forward(q, x_q);
check = 1.;
ok &= NearEqual(y_q[0] , check, eps, eps);
// check second order forward mode
q = 2;
x_q[0] = 0;
y_q = f.Forward(q, x_q);
check = 0.;
ok &= NearEqual(y_q[0] , check, eps, eps);
// --------------------------------------------------------------------
// Check reverse mode results
//
// third order reverse mode
q = 3;
vector<double> w(m), dw(n * q);
w[0] = 1.;
dw = f.Reverse(q, w);
check = 1.;
ok &= NearEqual(dw[0] , check, eps, eps);
check = 0.;
ok &= NearEqual(dw[1] , check, eps, eps);
ok &= NearEqual(dw[2] , check, eps, eps);
// --------------------------------------------------------------------
// forward mode sparstiy pattern
size_t p = n;
CppAD::vectorBool r1(n * p), s1(m * p);
r1[0] = true; // compute sparsity pattern for x[0]
s1 = f.ForSparseJac(p, r1);
ok &= s1[0] == true; // f[0] depends on x[0]
// --------------------------------------------------------------------
// reverse mode sparstiy pattern
q = m;
CppAD::vectorBool s2(q * m), r2(q * n);
s2[0] = true; // compute sparsity pattern for f[0]
r2 = f.RevSparseJac(q, s2);
ok &= r2[0] == true; // f[0] depends on x[0]
// --------------------------------------------------------------------
// Hessian sparsity (using previous ForSparseJac call)
CppAD::vectorBool s3(m), h(p * n);
s3[0] = true; // compute sparsity pattern for f[0]
//.........这里部分代码省略.........
示例5: old_usead_2
//.........这里部分代码省略.........
ok &= NearEqual( yp[1], check, eps, eps);
//
// forward mode second order Taylor coefficient w.r.t t
q = 2;
up[0] = 0.0;
up[1] = 0.0;
up[2] = 0.0;
yp = f.Forward(q, up);
check = 0.0;
ok &= NearEqual( yp[0], check, eps, eps);
check = 1.0 / 2.0;
ok &= NearEqual( yp[1], check, eps, eps);
// --------------------------------------------------------------------
// reverse mode derivatives of \partial_t y_1 (t)
vector<double> w(m * q), dw(n * q);
w[0 * q + 0] = 0.0;
w[1 * q + 0] = 0.0;
w[0 * q + 1] = 0.0;
w[1 * q + 1] = 1.0;
dw = f.Reverse(q, w);
// derivative of y_1(u) = u_1 + u_0 * u_2 + u_2^2 / 2, w.r.t. u
// is equal deritative of \partial_u2 y_1(u) w.r.t \partial_u2 u
check = u2;
ok &= NearEqual( dw[0 * q + 1], check, eps, eps);
check = 1.0;
ok &= NearEqual( dw[1 * q + 1], check, eps, eps);
check = u0 + u2;
ok &= NearEqual( dw[2 * q + 1], check, eps, eps);
// derivative of \partial_t y_1 w.r.t u = u_0 + t, w.r.t u
check = 1.0;
ok &= NearEqual( dw[0 * q + 0], check, eps, eps);
check = 0.0;
ok &= NearEqual( dw[1 * q + 0], check, eps, eps);
check = 1.0;
ok &= NearEqual( dw[2 * q + 0], check, eps, eps);
// --------------------------------------------------------------------
// forward mode sparsity pattern for the Jacobian
// f_u = [ 1, 0, 1 ]
// [ u_2, 1, u_2 ]
size_t i, j, p = n;
CppAD::vectorBool r(n * p), s(m * p);
// r = identity sparsity pattern
for(i = 0; i < n; i++)
for(j = 0; j < p; j++)
r[i*n +j] = (i == j);
s = f.ForSparseJac(p, r);
ok &= s[ 0 * p + 0] == true;
ok &= s[ 0 * p + 1] == false;
ok &= s[ 0 * p + 2] == true;
ok &= s[ 1 * p + 0] == true;
ok &= s[ 1 * p + 1] == true;
ok &= s[ 1 * p + 2] == true;
// --------------------------------------------------------------------
// reverse mode sparsity pattern for the Jacobian
q = m;
s.resize(q * m);
r.resize(q * n);
// s = identity sparsity pattern
for(i = 0; i < q; i++)
for(j = 0; j < m; j++)
s[i*m +j] = (i == j);
r = f.RevSparseJac(q, s);
ok &= r[ 0 * n + 0] == true;
ok &= r[ 0 * n + 1] == false;
ok &= r[ 0 * n + 2] == true;
ok &= r[ 1 * n + 0] == true;
ok &= r[ 1 * n + 1] == true;
ok &= r[ 1 * n + 2] == true;
// --------------------------------------------------------------------
// Hessian sparsity for y_1 (u) = u_1 + u_0 * u_2 + u_2^2 / 2
s.resize(m);
s[0] = false;
s[1] = true;
r.resize(n * n);
for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
r[ i * n + j ] = (i == j);
CppAD::vectorBool h(n * n);
h = f.RevSparseHes(n, s);
ok &= h[0 * n + 0] == false;
ok &= h[0 * n + 1] == false;
ok &= h[0 * n + 2] == true;
ok &= h[1 * n + 0] == false;
ok &= h[1 * n + 1] == false;
ok &= h[1 * n + 2] == false;
ok &= h[2 * n + 0] == true;
ok &= h[2 * n + 1] == false;
ok &= h[2 * n + 2] == true;
// --------------------------------------------------------------------
destroy_r();
// Free all temporary work space associated with old_atomic objects.
// (If there are future calls to user atomic functions, they will
// create new temporary work space.)
CppAD::user_atomic<double>::clear();
return ok;
}