本文整理汇总了C++中ADFun::Domain方法的典型用法代码示例。如果您正苦于以下问题:C++ ADFun::Domain方法的具体用法?C++ ADFun::Domain怎么用?C++ ADFun::Domain使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ADFun
的用法示例。
在下文中一共展示了ADFun::Domain方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: JacobianRev
void JacobianRev(ADFun<Base> &f, const Vector &x, Vector &jac)
{ size_t i;
size_t j;
size_t n = f.Domain();
size_t m = f.Range();
CPPAD_ASSERT_UNKNOWN( size_t(x.size()) == f.Domain() );
CPPAD_ASSERT_UNKNOWN( size_t(jac.size()) == f.Range() * f.Domain() );
// argument and result for reverse mode calculations
Vector u(n);
Vector v(m);
// initialize all the components
for(i = 0; i < m; i++)
v[i] = Base(0);
// loop through the different coordinate directions
for(i = 0; i < m; i++)
{ if( f.Parameter(i) )
{ // return zero for this component of f
for(j = 0; j < n; j++)
jac[ i * n + j ] = Base(0);
}
else
{
// set v to the i-th coordinate direction
v[i] = Base(1);
// compute the derivative of this component of f
u = f.Reverse(1, v);
// reset v to vector of all zeros
v[i] = Base(0);
// return the result
for(j = 0; j < n; j++)
jac[ i * n + j ] = u[j];
}
}
}
示例2: SetUp
virtual void SetUp() {
// use a special object for source code generation
typedef double Base;
typedef CG<Base> CGD;
typedef AD<CGD> ADCG;
x[0] = 0.5;
x[1] = 1.5;
// independent variables
std::vector<ADCG> u(n);
for (size_t j = 0; j < n; j++)
u[j] = x[j];
CppAD::Independent(u);
// dependent variable vector
std::vector<ADCG> Z(m);
/**
* create the CppAD tape as usual
*/
Z[0] = 1.5 * x[0] + 1;
Z[1] = 1.0 * x[1] + 2;
// create f: U -> Z and vectors used for derivative calculations
_fun = new ADFun<CGD>(u, Z);
/**
* Create the dynamic library
* (generate and compile source code)
*/
ModelCSourceGen<double> compHelp(*_fun, _modelName);
compHelp.setCreateForwardZero(true);
compHelp.setCreateForwardOne(true);
compHelp.setCreateReverseOne(true);
compHelp.setCreateReverseTwo(true);
compHelp.setCreateSparseJacobian(true);
compHelp.setCreateSparseHessian(true);
GccCompiler<double> compiler;
ModelLibraryCSourceGen<double> compDynHelp(compHelp);
DynamicModelLibraryProcessor<double> p(compDynHelp);
_dynamicLib = p.createDynamicLibrary(compiler);
_model = _dynamicLib->model(_modelName);
// dimensions
ASSERT_EQ(_model->Domain(), _fun->Domain());
ASSERT_EQ(_model->Range(), _fun->Range());
}
示例3: JacobianFor
void JacobianFor(ADFun<Base> &f, const Vector &x, Vector &jac)
{ size_t i;
size_t j;
size_t n = f.Domain();
size_t m = f.Range();
// check Vector is Simple Vector class with Base type elements
CheckSimpleVector<Base, Vector>();
CPPAD_ASSERT_UNKNOWN( size_t(x.size()) == f.Domain() );
CPPAD_ASSERT_UNKNOWN( size_t(jac.size()) == f.Range() * f.Domain() );
// argument and result for forward mode calculations
Vector u(n);
Vector v(m);
// initialize all the components
for(j = 0; j < n; j++)
u[j] = Base(0);
// loop through the different coordinate directions
for(j = 0; j < n; j++)
{ // set u to the j-th coordinate direction
u[j] = Base(1);
// compute the partial of f w.r.t. this coordinate direction
v = f.Forward(1, u);
// reset u to vector of all zeros
u[j] = Base(0);
// return the result
for(i = 0; i < m; i++)
jac[ i * n + j ] = v[i];
}
}
示例4: testModel
void testModel(ADFun<CGD>& f,
size_t expectedTmp,
size_t expectedArraySize) {
using CppAD::vector;
size_t n = f.Domain();
//size_t m = f.Range();
CodeHandler<double> handler(10 + n * n);
vector<CGD> indVars(n);
handler.makeVariables(indVars);
vector<CGD> dep = f.Forward(0, indVars);
LanguageC<double> langC("double");
LangCDefaultVariableNameGenerator<double> nameGen;
handler.generateCode(std::cout, langC, dep, nameGen);
ASSERT_EQ(handler.getTemporaryVariableCount(), expectedTmp);
ASSERT_EQ(handler.getTemporaryArraySize(), expectedArraySize);
}
示例5:
void ADFun<Base>::operator=(const ADFun<Base>& f)
{ size_t m = f.Range();
size_t n = f.Domain();
size_t i;
// go through member variables in ad_fun.hpp order
//
// size_t objects
has_been_optimized_ = f.has_been_optimized_;
check_for_nan_ = f.check_for_nan_;
compare_change_count_ = f.compare_change_count_;
compare_change_number_ = f.compare_change_number_;
compare_change_op_index_ = f.compare_change_op_index_;
num_order_taylor_ = f.num_order_taylor_;
cap_order_taylor_ = f.cap_order_taylor_;
num_direction_taylor_ = f.num_direction_taylor_;
num_var_tape_ = f.num_var_tape_;
//
// CppAD::vector objects
ind_taddr_.resize(n);
ind_taddr_ = f.ind_taddr_;
dep_taddr_.resize(m);
dep_taddr_ = f.dep_taddr_;
dep_parameter_.resize(m);
dep_parameter_ = f.dep_parameter_;
//
// pod_vector objects
taylor_ = f.taylor_;
cskip_op_ = f.cskip_op_;
load_op_ = f.load_op_;
//
// player
play_ = f.play_;
//
// sparse_pack
for_jac_sparse_pack_.resize(0, 0);
size_t n_set = f.for_jac_sparse_pack_.n_set();
size_t end = f.for_jac_sparse_pack_.end();
if( n_set > 0 )
{ CPPAD_ASSERT_UNKNOWN( n_set == num_var_tape_ );
CPPAD_ASSERT_UNKNOWN( f.for_jac_sparse_set_.n_set() == 0 );
for_jac_sparse_pack_.resize(n_set, end);
for(i = 0; i < num_var_tape_ ; i++)
{ for_jac_sparse_pack_.assignment(
i ,
i ,
f.for_jac_sparse_pack_
);
}
}
//
// sparse_set
for_jac_sparse_set_.resize(0, 0);
n_set = f.for_jac_sparse_set_.n_set();
end = f.for_jac_sparse_set_.end();
if( n_set > 0 )
{ CPPAD_ASSERT_UNKNOWN( n_set == num_var_tape_ );
CPPAD_ASSERT_UNKNOWN( f.for_jac_sparse_pack_.n_set() == 0 );
for_jac_sparse_set_.resize(n_set, end);
for(i = 0; i < num_var_tape_; i++)
{ for_jac_sparse_set_.assignment(
i ,
i ,
f.for_jac_sparse_set_
);
}
}
}
示例6: for
void ADFun<Base>::operator=(const ADFun<Base>& f)
{ size_t m = f.Range();
size_t n = f.Domain();
// go through member variables in order
// (see ad_fun.hpp for meaning of each variable)
compare_change_ = 0;
taylor_per_var_ = 0;
taylor_col_dim_ = 0;
total_num_var_ = f.total_num_var_;
ind_taddr_.resize(n);
ind_taddr_ = f.ind_taddr_;
dep_taddr_.resize(m);
dep_taddr_ = f.dep_taddr_;
dep_parameter_.resize(m);
dep_parameter_ = f.dep_parameter_;
play_ = f.play_;
if( taylor_ != CPPAD_NULL )
CPPAD_TRACK_DEL_VEC(taylor_);
taylor_ = CPPAD_NULL;
for_jac_sparse_pack_.resize(0, 0);
for_jac_sparse_set_.resize(0, 0);
// allocate and copy the Taylor coefficients
taylor_per_var_ = f.taylor_per_var_;
taylor_col_dim_ = f.taylor_col_dim_;
size_t length = total_num_var_ * taylor_col_dim_;
if( length > 0 ) taylor_ = CPPAD_TRACK_NEW_VEC(length, taylor_);
size_t i, j;
for(i = 0; i < total_num_var_; i++)
{ for(j = 0; j < taylor_per_var_; j++)
{ taylor_[ i * taylor_col_dim_ + j ] =
f.taylor_[ i * taylor_col_dim_ + j ];
}
}
// allocate and copy the forward sparsity information
size_t n_set = f.for_jac_sparse_pack_.n_set();
size_t end = f.for_jac_sparse_pack_.end();
if( n_set > 0 )
{ CPPAD_ASSERT_UNKNOWN( n_set == total_num_var_ );
CPPAD_ASSERT_UNKNOWN( f.for_jac_sparse_set_.n_set() == 0 );
for_jac_sparse_pack_.resize(n_set, end);
for(i = 0; i < total_num_var_ ; i++)
{ for_jac_sparse_pack_.assignment(
i ,
i ,
f.for_jac_sparse_pack_
);
}
}
n_set = f.for_jac_sparse_set_.n_set();
end = f.for_jac_sparse_set_.end();
if( n_set > 0 )
{ CPPAD_ASSERT_UNKNOWN( n_set == total_num_var_ );
CPPAD_ASSERT_UNKNOWN( f.for_jac_sparse_pack_.n_set() == 0 );
for_jac_sparse_set_.resize(n_set, end);
for(i = 0; i < total_num_var_; i++)
{ for_jac_sparse_set_.assignment(
i ,
i ,
f.for_jac_sparse_set_
);
}
}
}