本文整理汇总了C++中AAM_Shape::ReadAnnotations方法的典型用法代码示例。如果您正苦于以下问题:C++ AAM_Shape::ReadAnnotations方法的具体用法?C++ AAM_Shape::ReadAnnotations怎么用?C++ AAM_Shape::ReadAnnotations使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AAM_Shape
的用法示例。
在下文中一共展示了AAM_Shape::ReadAnnotations方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Train
//============================================================================
void AAM_TDM::Train(const file_lists& pts_files, const file_lists& img_files,
const AAM_PAW& m_warp,
double texture_percentage /* = 0.975 */,
bool registration /* = true */)
{
int nPoints = m_warp.nPoints();
int nPixels = m_warp.nPix()*3;
int nSamples = pts_files.size();
CvMat *AllTextures = cvCreateMat(nSamples, nPixels, CV_64FC1);
CvMat * matshape = cvCreateMat(1, nPoints*2, CV_64FC1);
for(int i = 0; i < nSamples; i++)
{
IplImage* image = cvLoadImage(img_files[i].c_str(), -1);
AAM_Shape trueshape;
if(!trueshape.ReadAnnotations(pts_files[i]))
trueshape.ScaleXY(image->width, image->height);
trueshape.Point2Mat(matshape);
AAM_Common::CheckShape(matshape, image->width, image->height);
CvMat t; cvGetRow(AllTextures, &t, i);
m_warp.CalcWarpTexture(matshape, image, &t);
cvReleaseImage(&image);
}
cvReleaseMat(&matshape);
// align texture so as to minimize the lighting variation
AAM_TDM::AlignTextures(AllTextures);
//now do pca
DoPCA(AllTextures, texture_percentage);
if(registration) SaveSeriesTemplate(AllTextures, m_warp);
cvReleaseMat(&AllTextures);
}
示例2: Train
//============================================================================
void AAM_IC::Train(const file_lists& pts_files,
const file_lists& img_files,
double scale /* = 1.0 */,
double shape_percentage /* = 0.975 */,
double texture_percentage /* = 0.975 */)
{
if(pts_files.size() != img_files.size())
{
fprintf(stderr, "ERROE(%s, %d): #Shapes != #Images\n",
__FILE__, __LINE__);
exit(0);
}
printf("################################################\n");
printf("Build Inverse Compositional Image Alignmennt Model...\n");
std::vector<AAM_Shape> AllShapes;
for(int ii = 0; ii < pts_files.size(); ii++)
{
AAM_Shape Shape;
bool flag = Shape.ReadAnnotations(pts_files[ii]);
if(!flag)
{
IplImage* image = cvLoadImage(img_files[ii].c_str(), -1);
Shape.ScaleXY(image->width, image->height);
cvReleaseImage(&image);
}
AllShapes.push_back(Shape);
}
//building shape and texture distribution model
printf("Build point distribution model...\n");
__shape.Train(AllShapes, scale, shape_percentage);
printf("Build warp information of mean shape mesh...");
__Points = cvCreateMat (1, __shape.nPoints(), CV_32FC2);
__Storage = cvCreateMemStorage(0);
double sp = 1.0;
//if(__shape.GetMeanShape().GetWidth() > 48)
// sp = 48/__shape.GetMeanShape().GetWidth();
__paw.Train(__shape.GetMeanShape()*sp, __Points, __Storage);
printf("[%d by %d, triangles #%d, pixels #%d*3]\n",
__paw.Width(), __paw.Height(), __paw.nTri(), __paw.nPix());
printf("Build texture distribution model...\n");
__texture.Train(pts_files, img_files, __paw, texture_percentage, true);
//calculate gradient of texture
printf("Calculating texture gradient...\n");
CvMat* dTx = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
CvMat* dTy = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
CalcTexGrad(__texture.GetMean(), dTx, dTy);
// save gradient image
mkdir("Modes");
__paw.SaveWarpTextureToImage("Modes/dTx.jpg", dTx);
__paw.SaveWarpTextureToImage("Modes/dTy.jpg", dTy);
//calculate warp Jacobian at base shape
printf("Calculating warp Jacobian...\n");
CvMat* Jx = cvCreateMat(__paw.nPix(), __shape.nModes()+4, CV_64FC1);
CvMat* Jy = cvCreateMat(__paw.nPix(), __shape.nModes()+4, CV_64FC1);
CalcWarpJacobian(Jx,Jy);
//calculate modified steepest descent image
printf("Calculating steepest descent images...\n");
CvMat* SD = cvCreateMat(__shape.nModes()+4, __texture.nPixels(), CV_64FC1);
CalcModifiedSD(SD, dTx, dTy, Jx, Jy);
//calculate inverse Hessian matrix
printf("Calculating Hessian inverse matrix...\n");
CvMat* H = cvCreateMat(__shape.nModes()+4, __shape.nModes()+4, CV_64FC1);
CalcHessian(H, SD);
//calculate update matrix (multiply inverse Hessian by modified steepest descent image)
__G = cvCreateMat(__shape.nModes()+4, __texture.nPixels(), CV_64FC1);
cvMatMul(H, SD, __G);
//release
cvReleaseMat(&Jx);
cvReleaseMat(&Jy);
cvReleaseMat(&dTx);
cvReleaseMat(&dTy);
cvReleaseMat(&SD);
cvReleaseMat(&H);
//alocate memory for on-line fitting stuff
__update_s0 = cvCreateMat(1, __shape.nPoints()*2, CV_64FC1);
__inv_pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);
__warp_t = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
__error_t = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
__search_pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);
__delta_pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);
__current_s = cvCreateMat(1, __shape.nPoints()*2, CV_64FC1);
__update_s = cvCreateMat(1, __shape.nPoints()*2, CV_64FC1);
__lamda = cvCreateMat(1, __texture.nModes(), CV_64FC1);
//.........这里部分代码省略.........
示例3: Train
//============================================================================
void AAM_CAM::Train(const file_lists& pts_files,
const file_lists& img_files,
double scale /* = 1.0 */,
double shape_percentage /* = 0.975 */,
double texture_percentage /* = 0.975 */,
double appearance_percentage /* = 0.975 */)
{
//building shape and texture distribution model
std::vector<AAM_Shape> AllShapes;
for(int ii = 0; ii < pts_files.size(); ii++)
{
AAM_Shape Shape;
bool flag = Shape.ReadAnnotations(pts_files[ii]);
if(!flag)
{
IplImage* image = cvLoadImage(img_files[ii].c_str(), -1);
Shape.ScaleXY(image->width, image->height);
cvReleaseImage(&image);
}
AllShapes.push_back(Shape);
}
printf("Build point distribution model...\n");
__shape.Train(AllShapes, scale, shape_percentage);
printf("Build warp information of mean shape mesh...");
__Points = cvCreateMat (1, __shape.nPoints(), CV_32FC2);
__Storage = cvCreateMemStorage(0);
AAM_Shape refShape = __shape.__AAMRefShape/* * scale */;
//if(refShape.GetWidth() > 50)
// refShape.Scale(50/refShape.GetWidth());
__paw.Train(refShape, __Points, __Storage);
printf("[%d by %d, %d triangles, %d*3 pixels]\n",
__paw.Width(), __paw.Height(), __paw.nTri(), __paw.nPix());
printf("Build texture distribution model...\n");
__texture.Train(pts_files, img_files, __paw, texture_percentage, true);
__pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);
printf("Build combined appearance model...\n");
int nsamples = pts_files.size();
int npointsby2 = __shape.nPoints()*2;
int npixels = __texture.nPixels();
int nfeatures = __shape.nModes() + __texture.nModes();
CvMat* AllAppearances = cvCreateMat(nsamples, nfeatures, CV_64FC1);
CvMat* s = cvCreateMat(1, npointsby2, CV_64FC1);
CvMat* t = cvCreateMat(1, npixels, CV_64FC1);
__MeanS = cvCreateMat(1, npointsby2, CV_64FC1);
__MeanG = cvCreateMat(1, npixels, CV_64FC1);
cvCopy(__shape.GetMean(), __MeanS);
cvCopy(__texture.GetMean(), __MeanG);
//calculate ratio of shape to appearance
CvScalar Sum1 = cvSum(__shape.__ShapesEigenValues);
CvScalar Sum2 = cvSum(__texture.__TextureEigenValues);
__WeightsS2T = sqrt(Sum2.val[0] / Sum1.val[0]);
printf("Combine shape and texture parameters...\n");
for(int i = 0; i < nsamples; i++)
{
//Get Shape and Texture respectively
IplImage* image = cvLoadImage(img_files[i].c_str(), -1);
AAM_Shape Shape;
if(!Shape.ReadAnnotations(pts_files[i]))
Shape.ScaleXY(image->width, image->height);
Shape.Point2Mat(s);
AAM_Common::CheckShape(s, image->width, image->height);
__paw.CalcWarpTexture(s, image, t);
__texture.NormalizeTexture(__MeanG, t);
//combine shape and texture parameters
CvMat OneAppearance;
cvGetRow(AllAppearances, &OneAppearance, i);
ShapeTexture2Combined(s, t, &OneAppearance);
cvReleaseImage(&image);
}
//Do PCA of appearances
DoPCA(AllAppearances, appearance_percentage);
int np = __AppearanceEigenVectors->rows;
printf("Extracting the shape and texture part of the combined eigen vectors..\n");
// extract the shape part of the combined eigen vectors
CvMat Ps;
cvGetCols(__AppearanceEigenVectors, &Ps, 0, __shape.nModes());
__Qs = cvCreateMat(np, npointsby2, CV_64FC1);
cvMatMul(&Ps, __shape.GetBases(), __Qs);
cvConvertScale(__Qs, __Qs, 1.0/__WeightsS2T);
// extract the texture part of the combined eigen vectors
CvMat Pg;
cvGetCols(__AppearanceEigenVectors, &Pg, __shape.nModes(), nfeatures);
__Qg = cvCreateMat(np, npixels, CV_64FC1);
//.........这里部分代码省略.........
示例4: CalcJacobianMatrix
//============================================================================
void AAM_Basic::CalcJacobianMatrix(const file_lists& pts_files,
const file_lists& img_files,
double disp_scale /* = 0.2 */,
double disp_angle /* = 20 */,
double disp_trans /* = 5.0 */,
double disp_std /* = 1.0 */,
int nExp /* = 30 */)
{
CvMat* J = cvCreateMat(__cam.nModes()+4, __cam.__texture.nPixels(), CV_64FC1);
CvMat* d = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
CvMat* o = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
CvMat* oo = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
CvMat* t = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
CvMat* t_m = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
CvMat* t_s = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
CvMat* t1 = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
CvMat* t2 = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
CvMat* u = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
CvMat* c = cvCreateMat(1, __cam.nModes(), CV_64FC1);
CvMat* s = cvCreateMat(1, __cam.__shape.nPoints()*2, CV_64FC1);
CvMat* q = cvCreateMat(1, 4, CV_64FC1);
CvMat* p = cvCreateMat(1, __cam.__shape.nModes(),CV_64FC1);
CvMat* lamda = cvCreateMat(1, __cam.__texture.nModes(), CV_64FC1);
double theta = disp_angle * CV_PI / 180;
double aa = MAX(fabs(disp_scale*cos(theta)), fabs(disp_scale*sin(theta)));
cvmSet(d,0,0,aa); cvmSet(d,0,1,aa); cvmSet(d,0,2,disp_trans); cvmSet(d,0,3,disp_trans);
for(int nmode = 0; nmode < __cam.nModes(); nmode++)
cvmSet(d,0,4+nmode,disp_std*sqrt(__cam.Var(nmode)));
srand(unsigned(time(0)));
cvSetZero(u);cvSetZero(J);
for(int i = 0; i < pts_files.size(); i++)
{
IplImage* image = cvLoadImage(img_files[i].c_str(), -1);
AAM_Shape Shape;
if(!Shape.ReadAnnotations(pts_files[i]))
Shape.ScaleXY(image->width, image->height);
Shape.Point2Mat(s);
//calculate current texture vector
__cam.__paw.CalcWarpTexture(s, image, t);
__cam.__texture.NormalizeTexture(__cam.__MeanG, t);
//calculate appearance parameters
__cam.__shape.CalcParams(s, p, q);
__cam.__texture.CalcParams(t, lamda);
__cam.CalcParams(c, p, lamda);
//update appearance and pose parameters
CvMat subo;
cvGetCols(o, &subo, 0, 4); cvCopy(q, &subo);
cvGetCols(o, &subo, 4, 4+__cam.nModes()); cvCopy(c, &subo);
//get optimal EstResidual
EstResidual(image, o, s, t_m, t_s, t1);
for(int j = 0; j < nExp; j++)
{
printf("Pertubing (%d/%d) for image (%d/%d)...\r", j, nExp, i, pts_files.size());
for(int l = 0; l < 4+__cam.nModes(); l++)
{
double D = cvmGet(d,0,l);
double v = rand_in_between(-D, D);
cvCopy(o, oo); CV_MAT_ELEM(*oo,double,0,l) += v;
EstResidual(image, oo, s, t_m, t_s, t2);
cvSub(t1, t2, t2);
cvConvertScale(t2, t2, 1.0/v);
//accumulate into l-th row
CvMat Jl; cvGetRow(J, &Jl, l);
cvAdd(&Jl, t2, &Jl);
CV_MAT_ELEM(*u, double, 0, l) += 1.0;
}
}
cvReleaseImage(&image);
}
//normalize
for(int l = 0; l < __cam.nModes()+4; l++)
{
CvMat Jl; cvGetRow(J, &Jl, l);
cvConvertScale(&Jl, &Jl, 1.0/cvmGet(u,0,l));
}
CvMat* JtJ = cvCreateMat(__cam.nModes()+4, __cam.nModes()+4, CV_64FC1);
CvMat* InvJtJ = cvCreateMat(__cam.nModes()+4, __cam.nModes()+4, CV_64FC1);
cvGEMM(J, J, 1, NULL, 0, JtJ, CV_GEMM_B_T);
cvInvert(JtJ, InvJtJ, CV_SVD);
cvMatMul(InvJtJ, J, __G);
cvReleaseMat(&J); cvReleaseMat(&d); cvReleaseMat(&o);
cvReleaseMat(&oo); cvReleaseMat(&t); cvReleaseMat(&t_s);
cvReleaseMat(&t_m); cvReleaseMat(&t1); cvReleaseMat(&t2);
cvReleaseMat(&u); cvReleaseMat(&c); cvReleaseMat(&s);
cvReleaseMat(&q); cvReleaseMat(&p); cvReleaseMat(&lamda);
//.........这里部分代码省略.........