当前位置: 首页>>代码示例>>C++>>正文


C++ AAM_Shape类代码示例

本文整理汇总了C++中AAM_Shape的典型用法代码示例。如果您正苦于以下问题:C++ AAM_Shape类的具体用法?C++ AAM_Shape怎么用?C++ AAM_Shape使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了AAM_Shape类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: InitShape

    AAM_Shape AAMBody::InitShape(const AAM_Shape& pMeanShape)
    {
        cv::Size imgSize = imageMessageIn_->GetSize();
        AAM_Shape detShape;
        AAM_Shape startShape;

        detShape.resize(2);

        detShape[0].x = param_->boundingBox.x < 0 ? 0 : param_->boundingBox.x;
        detShape[0].y = param_->boundingBox.y < 0 ? 0 : param_->boundingBox.y;
        if(detShape[0].x > imgSize.width)
            detShape[0].x = imgSize.width - param_->boundingBox.width;
        if(detShape[0].y > imgSize.height)
            detShape[0].y = imgSize.height - param_->boundingBox.height;


        detShape[1].x = detShape[0].x + param_->boundingBox.width;
        detShape[1].y = detShape[0].y + param_->boundingBox.height;
        if(detShape[1].x > imgSize.width)
            detShape[1].x = imgSize.width - param_->boundingBox.width;
        if(detShape[1].y > imgSize.height)
            detShape[1].y = imgSize.height - param_->boundingBox.height;


        AdjustShape(detShape);
        AlignShape(startShape, detShape, pMeanShape);

        return startShape;
    }
开发者ID:aodkrisda,项目名称:face-gesture-api,代码行数:29,代码来源:AAMBody.cpp

示例2: InitShape

void AAMFit::Fit( IplImage* pFrame, CvRect *pR, int pType )
{
	if( _model == NULL ) return;

	AAM_Shape currentShape = InitShape( _model->GetMeanShape(), pR, pType );

	int iter = _model->Fit(pFrame, currentShape, 20, false); // TODO: Valahol szivárog egy kis memória - nem mindig
	_imagePoints = currentShape.getPoints();
}
开发者ID:aodkrisda,项目名称:face-gesture-api,代码行数:9,代码来源:AAMFit.cpp

示例3: ShapeAAMFromASM

static AAM_Shape ShapeAAMFromASM(const asm_shape& shape)
{
	AAM_Shape s;
	s.resize(shape.NPoints());
	for(int i = 0; i < shape.NPoints(); i++)
	{
		s[i].x = shape[i].x;
		s[i].y = shape[i].y;
	}
	return s;
}
开发者ID:a543589796,项目名称:asmlibrary-android,代码行数:11,代码来源:DemoFit.cpp

示例4: FaceSynthesis

void FacePredict::FaceSynthesis(AAM_Shape &shape, CvMat* texture, IplImage* newImage)
{
	double thisfacewidth = shape.GetWidth();
	shape.Scale(stdwidth / thisfacewidth);
	shape.Translate(-shape.MinX(), -shape.MinY());

	AAM_PAW paw;
	CvMat* points = cvCreateMat (1, __shape.nPoints(), CV_32FC2);
	CvMemStorage* storage = cvCreateMemStorage(0);
	paw.Train(shape, points, storage, __paw.GetTri(), false);  //the actual shape

	__AAMRefShape.Translate(-__AAMRefShape.MinX(), -__AAMRefShape.MinY());  //refShape, central point is at (0,0);translate the min to (0,0)
	double minV, maxV;
	cvMinMaxLoc(texture, &minV, &maxV);
	cvConvertScale(texture, texture, 1/(maxV-minV)*255, -minV*255/(maxV-minV));

	cvZero(newImage);

	int x1, x2, y1, y2, idx1 = 0, idx2 = 0;
	int tri_idx, v1, v2, v3;
	int minx, miny, maxx, maxy;
	minx = shape.MinX(); miny = shape.MinY();
	maxx = shape.MaxX(); maxy = shape.MaxY();
	for(int y = miny; y < maxy; y++)
	{
		y1 = y-miny;
		for(int x = minx; x < maxx; x++)
		{
			x1 = x-minx;
			idx1 = paw.Rect(y1, x1);
			if(idx1 >= 0)
			{
				tri_idx = paw.PixTri(idx1);
				v1 = paw.Tri(tri_idx, 0);
				v2 = paw.Tri(tri_idx, 1);
				v3 = paw.Tri(tri_idx, 2);
		
				x2 = paw.Alpha(idx1)*__AAMRefShape[v1].x + paw.Belta(idx1)*__AAMRefShape[v2].x +  
					paw.Gamma(idx1)*__AAMRefShape[v3].x;
				y2 = paw.Alpha(idx1)*__AAMRefShape[v1].y + paw.Belta(idx1)*__AAMRefShape[v2].y +  
					paw.Gamma(idx1)*__AAMRefShape[v3].y;
				
				idx2 = __paw.Rect(y2, x2);
				if(idx2 < 0) continue;

				CV_IMAGE_ELEM(newImage, byte, y, 3*x) = cvmGet(texture, 0, 3*idx2);
				CV_IMAGE_ELEM(newImage, byte, y, 3*x+1) = cvmGet(texture, 0, 3*idx2+1);
				CV_IMAGE_ELEM(newImage, byte, y, 3*x+2) = cvmGet(texture, 0, 3*idx2+2);
			}
		}
	}
	cvReleaseMat(&points);
	cvReleaseMemStorage(&storage);
}
开发者ID:timedcy,项目名称:face,代码行数:54,代码来源:FacePredict.cpp

示例5: CalcMeanShape

//============================================================================
void AAM_PDM::CalcMeanShape(AAM_Shape &MeanShape, 
							const std::vector<AAM_Shape> &AllShapes)
{
	MeanShape.resize(AllShapes[0].NPoints());
    MeanShape = 0;
    for(int i = 0; i < (int)AllShapes.size(); i++)     MeanShape += AllShapes[i];
    MeanShape /= AllShapes.size();
}
开发者ID:Belial2010,项目名称:pkmFace,代码行数:9,代码来源:AAM_PDM.cpp

示例6: DrawAppearance

//============================================================================
void AAM_CAM::DrawAppearance(IplImage* image, const AAM_Shape& Shape, CvMat* Texture)
{
	AAM_PAW paw;
	int x1, x2, y1, y2, idx1 = 0, idx2 = 0;
	int tri_idx, v1, v2, v3;
	int minx, miny, maxx, maxy;
	paw.Train(Shape, __Points, __Storage, __paw.GetTri(), false);
	AAM_Shape refShape = __paw.__referenceshape;
	double minV, maxV;
	cvMinMaxLoc(Texture, &minV, &maxV);
	cvConvertScale(Texture, Texture, 1/(maxV-minV)*255, -minV*255/(maxV-minV));

	minx = Shape.MinX(); miny = Shape.MinY();
	maxx = Shape.MaxX(); maxy = Shape.MaxY();
	for(int y = miny; y < maxy; y++)
	{
		y1 = y-miny;
		for(int x = minx; x < maxx; x++)
		{
			x1 = x-minx;
			idx1 = paw.Rect(y1, x1);
			if(idx1 >= 0)
			{
				tri_idx = paw.PixTri(idx1);
				v1 = paw.Tri(tri_idx, 0);
				v2 = paw.Tri(tri_idx, 1);
				v3 = paw.Tri(tri_idx, 2);
		
				x2 = paw.Alpha(idx1)*refShape[v1].x + paw.Belta(idx1)*refShape[v2].x +  
					paw.Gamma(idx1)*refShape[v3].x;
				y2 = paw.Alpha(idx1)*refShape[v1].y + paw.Belta(idx1)*refShape[v2].y +  
					paw.Gamma(idx1)*refShape[v3].y;
				
				idx2 = __paw.Rect(y2, x2);
				if(idx2 < 0) continue;

				CV_IMAGE_ELEM(image, byte, y, 3*x) = cvmGet(Texture, 0, 3*idx2);
				CV_IMAGE_ELEM(image, byte, y, 3*x+1) = cvmGet(Texture, 0, 3*idx2+1);
				CV_IMAGE_ELEM(image, byte, y, 3*x+2) = cvmGet(Texture, 0, 3*idx2+2);
			}
		}
	}
}
开发者ID:HVisionSensing,项目名称:aamlibrary,代码行数:44,代码来源:AAM_CAM.cpp

示例7: cvCreateMat

//============================================================================
void AAM_TDM::Train(const file_lists& pts_files, const file_lists& img_files, 
					const AAM_PAW& m_warp, 
					double texture_percentage /* = 0.975 */, 
					bool registration /* = true */)
{
	int nPoints = m_warp.nPoints();
	int nPixels = m_warp.nPix()*3;
	int nSamples = pts_files.size();
	
	CvMat *AllTextures = cvCreateMat(nSamples, nPixels, CV_64FC1);
	
	CvMat * matshape = cvCreateMat(1, nPoints*2, CV_64FC1);
	for(int i = 0; i < nSamples; i++)
	{
		IplImage* image = cvLoadImage(img_files[i].c_str(), -1);
		
		AAM_Shape trueshape;
		if(!trueshape.ReadAnnotations(pts_files[i]))
			trueshape.ScaleXY(image->width, image->height);
		trueshape.Point2Mat(matshape);
		AAM_Common::CheckShape(matshape, image->width, image->height);
		
		CvMat t;	cvGetRow(AllTextures, &t, i);
		m_warp.CalcWarpTexture(matshape, image, &t);
		
		cvReleaseImage(&image);
	}
	cvReleaseMat(&matshape);
	
	// align texture so as to minimize the lighting variation
	AAM_TDM::AlignTextures(AllTextures);
	
	//now do pca
	DoPCA(AllTextures, texture_percentage);

	if(registration) SaveSeriesTemplate(AllTextures, m_warp);

	cvReleaseMat(&AllTextures);
}
开发者ID:2php,项目名称:aamlibrary,代码行数:40,代码来源:AAM_TDM.cpp

示例8: AlignShape

    void AAMBody::AlignShape(AAM_Shape& pStartShape, const AAM_Shape& pDetShape, const AAM_Shape& pMeanShape)
    {
        AAM_Shape baseShape, alignedShape;
        baseShape.resize(2);
        alignedShape.resize(2);

        double meanCenter = (pMeanShape.MinY() + pMeanShape.MaxY()) * 0.5;
        baseShape[0].x = pMeanShape.MinX();
        baseShape[0].y = meanCenter;
        baseShape[1].x = pMeanShape.MaxX();
        baseShape[1].y = meanCenter;

        double yMean = (pDetShape[1].y + pDetShape[0].y) * 0.5;
        alignedShape[0].x = pDetShape[0].x;
        alignedShape[0].y = yMean;
        alignedShape[1].x = pDetShape[1].x;
        alignedShape[1].y = yMean;

        double a, b, tx, ty;
        baseShape.AlignTransformation(alignedShape, a, b, tx, ty);
        pStartShape = pMeanShape;
        pStartShape.TransformPose(a, b, tx, ty);
    }
开发者ID:aodkrisda,项目名称:face-gesture-api,代码行数:23,代码来源:AAMBody.cpp

示例9: Fit

//============================================================================
void AAM_IC::Fit(const IplImage* image, 		AAM_Shape& Shape, 
				int max_iter /* = 30 */, 	bool showprocess /* = false */)
{
	//initialize some stuff
	double t = gettime;
	const CvMat* A0 = __texture.GetMean();
	CvMat p; cvGetCols(__search_pq, &p, 4, 4+__shape.nModes());
	Shape.Point2Mat(__current_s);
	SetAllParamsZero();
	__shape.CalcParams(__current_s, __search_pq);
	IplImage* Drawimg = 0;
	
	for(int iter = 0; iter < max_iter; iter++)
	{
		if(showprocess)
		{	
			if(Drawimg == 0)	Drawimg = cvCloneImage(image);	
			else cvCopy(image, Drawimg);
			Shape.Mat2Point(__current_s);
			Draw(Drawimg, Shape, 2);
			mkdir("result");
			char filename[100];
			sprintf(filename, "result/Iter-%02d.jpg", iter);
			cvSaveImage(filename, Drawimg);
			
		}
		
		//check the current shape
		AAM_Common::CheckShape(__current_s, image->width, image->height);
		
		//warp image to mesh shape mesh
		__paw.CalcWarpTexture(__current_s, image, __warp_t);
		AAM_TDM::NormalizeTexture(A0, __warp_t);
		cvSub(__warp_t, A0, __error_t);
		
		 //calculate updates (and scale to account for linear lighting gain)
		cvGEMM(__error_t, __G, 1, NULL, 1, __delta_pq, CV_GEMM_B_T);
		
		//check for parameter convergence
		if(cvNorm(__delta_pq) < 1e-6)	break;

		//apply inverse compositional algorithm to update parameters
		InverseCompose(__delta_pq, __current_s, __update_s);
		
		//smooth shape
		cvAddWeighted(__current_s, 0.4, __update_s, 0.6, 0, __update_s);
		//update parameters
		__shape.CalcParams(__update_s, __search_pq);
		//calculate constrained new shape
		__shape.CalcShape(__search_pq, __update_s);
		
		//check for shape convergence
		if(cvNorm(__current_s, __update_s, CV_L2) < 0.001)	break;
		else cvCopy(__update_s, __current_s);	
	}

	Shape.Mat2Point(__current_s);
		
	t = gettime-t;
	printf("AAM IC Fitting time cost %.3f millisec\n", t);
	
	cvReleaseImage(&Drawimg);
}
开发者ID:HVisionSensing,项目名称:aamlibrary,代码行数:64,代码来源:AAM_IC.cpp

示例10: fprintf

//============================================================================
void AAM_IC::Train(const file_lists& pts_files, 
				   const file_lists& img_files, 
				   double scale /* = 1.0 */, 
				   double shape_percentage /* = 0.975 */, 
				   double texture_percentage /* = 0.975 */)
{
	if(pts_files.size() != img_files.size())
	{
		fprintf(stderr, "ERROE(%s, %d): #Shapes != #Images\n",
			__FILE__, __LINE__);
		exit(0);
	}

	printf("################################################\n");
	printf("Build Inverse Compositional Image Alignmennt Model...\n");

	std::vector<AAM_Shape> AllShapes;
	for(int ii = 0; ii < pts_files.size(); ii++)
	{
		AAM_Shape Shape;
		bool flag = Shape.ReadAnnotations(pts_files[ii]);
		if(!flag)
		{
			IplImage* image = cvLoadImage(img_files[ii].c_str(), -1);
			Shape.ScaleXY(image->width, image->height);
			cvReleaseImage(&image);
		}
		AllShapes.push_back(Shape);
	}

	//building shape and texture distribution model
	printf("Build point distribution model...\n");
	__shape.Train(AllShapes, scale, shape_percentage);
	
	printf("Build warp information of mean shape mesh...");
	__Points = cvCreateMat (1, __shape.nPoints(), CV_32FC2);
	__Storage = cvCreateMemStorage(0);

	double sp = 1.0;
	//if(__shape.GetMeanShape().GetWidth() > 48)
	//	sp = 48/__shape.GetMeanShape().GetWidth();

	__paw.Train(__shape.GetMeanShape()*sp, __Points, __Storage);
	printf("[%d by %d, triangles #%d, pixels #%d*3]\n",
		__paw.Width(), __paw.Height(), __paw.nTri(), __paw.nPix());

	printf("Build texture distribution model...\n");
	__texture.Train(pts_files, img_files, __paw, texture_percentage, true);

	//calculate gradient of texture
	printf("Calculating texture gradient...\n");
	CvMat* dTx = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
	CvMat* dTy = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
	CalcTexGrad(__texture.GetMean(), dTx, dTy);
	
	// save gradient image
	mkdir("Modes");
	__paw.SaveWarpTextureToImage("Modes/dTx.jpg", dTx);
	__paw.SaveWarpTextureToImage("Modes/dTy.jpg", dTy);
	
	//calculate warp Jacobian at base shape
	printf("Calculating warp Jacobian...\n");
	CvMat* Jx = cvCreateMat(__paw.nPix(), __shape.nModes()+4, CV_64FC1);
	CvMat* Jy = cvCreateMat(__paw.nPix(), __shape.nModes()+4, CV_64FC1);
	CalcWarpJacobian(Jx,Jy);
	
	//calculate modified steepest descent image
	printf("Calculating steepest descent images...\n");
	CvMat* SD = cvCreateMat(__shape.nModes()+4, __texture.nPixels(), CV_64FC1);
	CalcModifiedSD(SD, dTx, dTy, Jx, Jy);

	//calculate inverse Hessian matrix
	printf("Calculating Hessian inverse matrix...\n");
	CvMat* H = cvCreateMat(__shape.nModes()+4, __shape.nModes()+4, CV_64FC1);
	CalcHessian(H, SD);

	//calculate update matrix (multiply inverse Hessian by modified steepest descent image)
	__G = cvCreateMat(__shape.nModes()+4, __texture.nPixels(), CV_64FC1);
	cvMatMul(H, SD, __G);

	//release
	cvReleaseMat(&Jx);
	cvReleaseMat(&Jy);
	cvReleaseMat(&dTx);
	cvReleaseMat(&dTy);
	cvReleaseMat(&SD);
	cvReleaseMat(&H);

	//alocate memory for on-line fitting stuff
	__update_s0 = cvCreateMat(1, __shape.nPoints()*2, CV_64FC1);
	__inv_pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);
	__warp_t = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
	__error_t = cvCreateMat(1, __texture.nPixels(), CV_64FC1);
	__search_pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);
	__delta_pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);
	__current_s = cvCreateMat(1, __shape.nPoints()*2, CV_64FC1);
	__update_s = cvCreateMat(1, __shape.nPoints()*2, CV_64FC1);
	__lamda  = cvCreateMat(1, __texture.nModes(), CV_64FC1);

//.........这里部分代码省略.........
开发者ID:HVisionSensing,项目名称:aamlibrary,代码行数:101,代码来源:AAM_IC.cpp

示例11: cvLoadImage

//============================================================================
void AAM_CAM::Train(const file_lists& pts_files, 
					const file_lists& img_files, 
					double scale /* = 1.0 */,
					double shape_percentage /* = 0.975 */, 
					double texture_percentage /* = 0.975 */, 
					double appearance_percentage /* = 0.975 */)
{
	//building shape and texture distribution model
	std::vector<AAM_Shape> AllShapes;
	for(int ii = 0; ii < pts_files.size(); ii++)
	{
		AAM_Shape Shape;
		bool flag = Shape.ReadAnnotations(pts_files[ii]);
		if(!flag)
		{
			IplImage* image = cvLoadImage(img_files[ii].c_str(), -1);
			Shape.ScaleXY(image->width, image->height);
			cvReleaseImage(&image);
		}
		AllShapes.push_back(Shape);
	}

	printf("Build point distribution model...\n");
	__shape.Train(AllShapes, scale, shape_percentage);
	
	printf("Build warp information of mean shape mesh...");
	__Points = cvCreateMat (1, __shape.nPoints(), CV_32FC2);
	__Storage = cvCreateMemStorage(0);
	AAM_Shape refShape = __shape.__AAMRefShape/* * scale */;
	//if(refShape.GetWidth() > 50)
	//	refShape.Scale(50/refShape.GetWidth());
	
	__paw.Train(refShape, __Points, __Storage);
	printf("[%d by %d, %d triangles, %d*3 pixels]\n",
		__paw.Width(), __paw.Height(), __paw.nTri(), __paw.nPix());
	
	printf("Build texture distribution model...\n");
	__texture.Train(pts_files, img_files, __paw, texture_percentage, true);
	__pq = cvCreateMat(1, __shape.nModes()+4, CV_64FC1);	

	printf("Build combined appearance model...\n");	
	int nsamples = pts_files.size();
	int npointsby2 = __shape.nPoints()*2;
	int npixels = __texture.nPixels();
	int nfeatures = __shape.nModes() + __texture.nModes();
	CvMat* AllAppearances = cvCreateMat(nsamples, nfeatures, CV_64FC1);
	CvMat* s = cvCreateMat(1, npointsby2, CV_64FC1);
	CvMat* t = cvCreateMat(1, npixels, CV_64FC1);
	__MeanS = cvCreateMat(1, npointsby2, CV_64FC1);
	__MeanG = cvCreateMat(1, npixels, CV_64FC1);
	cvCopy(__shape.GetMean(), __MeanS);
	cvCopy(__texture.GetMean(), __MeanG);

	//calculate ratio of shape to appearance
	CvScalar Sum1 = cvSum(__shape.__ShapesEigenValues);
    CvScalar Sum2 = cvSum(__texture.__TextureEigenValues);
    __WeightsS2T = sqrt(Sum2.val[0] / Sum1.val[0]);

	printf("Combine shape and texture parameters...\n");	
	for(int i = 0; i < nsamples; i++)
	{
		//Get Shape and Texture respectively
		IplImage* image = cvLoadImage(img_files[i].c_str(), -1);
		
		AAM_Shape Shape;
		if(!Shape.ReadAnnotations(pts_files[i]))
			Shape.ScaleXY(image->width, image->height);
		Shape.Point2Mat(s);
		AAM_Common::CheckShape(s, image->width, image->height);
		
		__paw.CalcWarpTexture(s, image, t);
		__texture.NormalizeTexture(__MeanG, t);

		//combine shape and texture parameters
		CvMat OneAppearance;
		cvGetRow(AllAppearances, &OneAppearance, i);
		ShapeTexture2Combined(s, t, &OneAppearance);

		cvReleaseImage(&image);
	}

	//Do PCA of appearances
	DoPCA(AllAppearances, appearance_percentage);

	int np = __AppearanceEigenVectors->rows;

	printf("Extracting the shape and texture part of the combined eigen vectors..\n");
	
	// extract the shape part of the combined eigen vectors
    CvMat Ps;
	cvGetCols(__AppearanceEigenVectors, &Ps, 0, __shape.nModes());
	__Qs = cvCreateMat(np, npointsby2, CV_64FC1);
	cvMatMul(&Ps, __shape.GetBases(), __Qs);
	cvConvertScale(__Qs, __Qs, 1.0/__WeightsS2T);

	// extract the texture part of the combined eigen vectors
    CvMat Pg;
	cvGetCols(__AppearanceEigenVectors, &Pg, __shape.nModes(), nfeatures);
	__Qg = cvCreateMat(np, npixels, CV_64FC1);
//.........这里部分代码省略.........
开发者ID:HVisionSensing,项目名称:aamlibrary,代码行数:101,代码来源:AAM_CAM.cpp

示例12: Fit

//============================================================================
void AAM_Basic::Fit(const IplImage* image, AAM_Shape& Shape,
					int max_iter /* = 30 */,bool showprocess /* = false */)
{
	//intial some stuff
	double t = gettime;
	double e1, e2;
	const int np = 5;
	double k_values[np] = {1, 0.5, 0.25, 0.125, 0.0625};
	int k;
	IplImage* Drawimg = 0;

	Shape.Point2Mat(__s);
	InitParams(image);
	CvMat subcq;
	cvGetCols(__current_c_q, &subcq, 0, 4); cvCopy(__q, &subcq);
	cvGetCols(__current_c_q, &subcq, 4, 4+__cam.nModes()); cvCopy(__c, &subcq);

	//calculate error
	e1 = EstResidual(image, __current_c_q, __s, __t_m, __t_s, __delta_t);

	//do a number of iteration until convergence
	for(int iter = 0; iter <max_iter; iter++)
	{
		if(showprocess)
		{
			if(Drawimg == 0)	Drawimg = cvCloneImage(image);
			else cvCopy(image, Drawimg);
			__cam.CalcShape(__s, __current_c_q);
			Shape.Mat2Point(__s);
			Draw(Drawimg, Shape, 2);
			#ifdef TARGET_WIN32
			mkdir("result");
			#else
			mkdir("result", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
			#endif
			char filename[100];
			sprintf(filename, "result/ter%d.bmp", iter);
			cvSaveImage(filename, Drawimg);
		}

		// predict parameter update
		cvGEMM(__delta_t, __G, 1, NULL, 0, __delta_c_q, CV_GEMM_B_T);

		//force first iteration
		if(iter == 0)
		{
			cvAdd(__current_c_q, __delta_c_q, __current_c_q);
			CvMat c; cvGetCols(__current_c_q, &c, 4, 4+__cam.nModes());
			//constrain parameters
			__cam.Clamp(&c);
			e1 = EstResidual(image, __current_c_q, __s, __t_m, __t_s, __delta_t);
		}

		//find largest step size which reduces texture EstResidual
		else
		{
			for(k = 0; k < np; k++)
			{
				cvScaleAdd(__delta_c_q, cvScalar(k_values[k]), __current_c_q,  __update_c_q);
				//constrain parameters
				CvMat c; cvGetCols(__update_c_q, &c, 4, 4+__cam.nModes());
				__cam.Clamp(&c);

				e2 = EstResidual(image, __update_c_q, __s, __t_m, __t_s, __delta_t);
				if(e2 <= e1)	break;
			}
		}

		//check for convergence
		if(iter > 0)
		{
			if(k == np)
			{
				e1 = e2;
				cvCopy(__update_c_q, __current_c_q);
			}

			else if(fabs(e2-e1)<0.001*e1)	break;
			else if (cvNorm(__delta_c_q)<0.001)	break;
			else
			{
				cvCopy(__update_c_q, __current_c_q);
				e1 = e2;
			}
		}
	}

	cvReleaseImage(&Drawimg);
	__cam.CalcShape(__s, __current_c_q);
	Shape.Mat2Point(__s);
	t = gettime - t;
	printf("AAM-Basic Fitting time cost: %.3f millisec\n", t);
}
开发者ID:Ahmedn1,项目名称:ccv-hand,代码行数:94,代码来源:AAM_Basic.cpp

示例13: cvCreateMat

//============================================================================
void AAM_Basic::CalcJacobianMatrix(const file_lists& pts_files,
								   const file_lists& img_files,
								   double disp_scale /* = 0.2 */,
								   double disp_angle /* = 20 */,
								   double disp_trans /* = 5.0 */,
								   double disp_std /* = 1.0 */,
								   int nExp /* = 30 */)
{
	CvMat* J = cvCreateMat(__cam.nModes()+4, __cam.__texture.nPixels(), CV_64FC1);
	CvMat* d = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
	CvMat* o = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
	CvMat* oo = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
	CvMat* t = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
	CvMat* t_m = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
	CvMat* t_s = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
	CvMat* t1 = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
	CvMat* t2 = cvCreateMat(1, __cam.__texture.nPixels(), CV_64FC1);
	CvMat* u = cvCreateMat(1, __cam.nModes()+4, CV_64FC1);
	CvMat* c = cvCreateMat(1, __cam.nModes(), CV_64FC1);
    CvMat* s = cvCreateMat(1, __cam.__shape.nPoints()*2, CV_64FC1);
    CvMat* q = cvCreateMat(1, 4, CV_64FC1);
	CvMat* p = cvCreateMat(1, __cam.__shape.nModes(),CV_64FC1);
	CvMat* lamda = cvCreateMat(1, __cam.__texture.nModes(), CV_64FC1);

	double theta = disp_angle * CV_PI / 180;
	double aa = MAX(fabs(disp_scale*cos(theta)), fabs(disp_scale*sin(theta)));
	cvmSet(d,0,0,aa); cvmSet(d,0,1,aa); cvmSet(d,0,2,disp_trans); cvmSet(d,0,3,disp_trans);
	for(int nmode = 0; nmode < __cam.nModes(); nmode++)
		cvmSet(d,0,4+nmode,disp_std*sqrt(__cam.Var(nmode)));

	srand(unsigned(time(0)));
	cvSetZero(u);cvSetZero(J);
	for(int i = 0; i < pts_files.size(); i++)
	{
		IplImage* image = cvLoadImage(img_files[i].c_str(), -1);
		AAM_Shape Shape;
		if(!Shape.ReadAnnotations(pts_files[i]))
			Shape.ScaleXY(image->width, image->height);
		Shape.Point2Mat(s);

		//calculate current texture vector
		__cam.__paw.CalcWarpTexture(s, image, t);
		__cam.__texture.NormalizeTexture(__cam.__MeanG, t);

		//calculate appearance parameters
		__cam.__shape.CalcParams(s, p, q);
		__cam.__texture.CalcParams(t, lamda);
		__cam.CalcParams(c, p, lamda);

		//update appearance and pose parameters
		CvMat subo;
		cvGetCols(o, &subo, 0, 4); cvCopy(q, &subo);
		cvGetCols(o, &subo, 4, 4+__cam.nModes()); cvCopy(c, &subo);

		//get optimal EstResidual
		EstResidual(image, o, s, t_m, t_s, t1);

		for(int j = 0; j < nExp; j++)
		{
			printf("Pertubing (%d/%d) for image (%d/%d)...\r", j, nExp, i, pts_files.size());

			for(int l = 0; l < 4+__cam.nModes(); l++)
			{
				double D = cvmGet(d,0,l);
				double v = rand_in_between(-D, D);
				cvCopy(o, oo); CV_MAT_ELEM(*oo,double,0,l) += v;
				EstResidual(image, oo, s, t_m, t_s, t2);

				cvSub(t1, t2, t2);
				cvConvertScale(t2, t2, 1.0/v);

				//accumulate into l-th row
				CvMat Jl; cvGetRow(J, &Jl, l);
				cvAdd(&Jl, t2, &Jl);

				CV_MAT_ELEM(*u, double, 0, l) += 1.0;
			}
		}
		cvReleaseImage(&image);
	}

	//normalize
	for(int l = 0; l < __cam.nModes()+4; l++)
	{
		CvMat Jl; cvGetRow(J, &Jl, l);
		cvConvertScale(&Jl, &Jl, 1.0/cvmGet(u,0,l));
	}

	CvMat* JtJ = cvCreateMat(__cam.nModes()+4, __cam.nModes()+4, CV_64FC1);
	CvMat* InvJtJ = cvCreateMat(__cam.nModes()+4, __cam.nModes()+4, CV_64FC1);
	cvGEMM(J, J, 1, NULL, 0, JtJ, CV_GEMM_B_T);
    cvInvert(JtJ, InvJtJ, CV_SVD);
	cvMatMul(InvJtJ, J, __G);

	cvReleaseMat(&J);	cvReleaseMat(&d); 	cvReleaseMat(&o);
	cvReleaseMat(&oo); 	cvReleaseMat(&t);	cvReleaseMat(&t_s);
	cvReleaseMat(&t_m);	cvReleaseMat(&t1); 	cvReleaseMat(&t2);
	cvReleaseMat(&u); 	cvReleaseMat(&c);	cvReleaseMat(&s);
	cvReleaseMat(&q); 	cvReleaseMat(&p);	cvReleaseMat(&lamda);
//.........这里部分代码省略.........
开发者ID:Ahmedn1,项目名称:ccv-hand,代码行数:101,代码来源:AAM_Basic.cpp

示例14: DrawAppearance

//============================================================================
void AAM_Basic::DrawAppearance(IplImage* image)
{
	AAM_Shape Shape; Shape.Mat2Point(__current_s);
	AAM_PAW paw;
	paw.Train(Shape, __cam.__Points, __cam.__Storage, __cam.__paw.GetTri(), false);
	int x1, x2, y1, y2, idx1, idx2;
	int tri_idx, v1, v2, v3;
	int xby3, idxby3;
	int minx, miny, maxx, maxy;
	AAM_Shape refShape;	refShape.Mat2Point(__cam.__MeanS);
	refShape.Translate(-refShape.MinX(), -refShape.MinY());
	double minV, maxV;
	cvMinMaxLoc(__t_m, &minV, &maxV);
	cvConvertScale(__t_m, __t_m, 255/(maxV-minV), -minV*255/(maxV-minV));
	byte* pimg;
	double* fastt = __t_m->data.db;

	minx = Shape.MinX(); miny = Shape.MinY();
	maxx = Shape.MaxX(); maxy = Shape.MaxY();

	if( minx < 0 )
		minx = 0;
	else if(minx >= image->width)
		minx = image->width - 1;

	if( miny < 0 )
		miny = 0;
	else if(miny >= image->height)
		miny = image->height - 1;

	if( maxx < 0 )
		maxx = 0;
	else if(maxx >= image->width)
		maxx = image->height - 1;

	if( maxy < 0 )
		maxy = 0;
	else if(maxy >= image->height)
		maxy = image->height - 1;

	for(int y = miny; y < maxy; y++)
	{
		y1 = y-miny;
		pimg = (byte*)(image->imageData + image->widthStep*y);
		for(int x = minx; x < maxx; x++)
		{
			x1 = x-minx;
			idx1 = paw.__rect[y1][x1];
			if(idx1 >= 0)
			{
				tri_idx = paw.PixTri(idx1);
				v1 = paw.Tri(tri_idx, 0);
				v2 = paw.Tri(tri_idx, 1);
				v3 = paw.Tri(tri_idx, 2);
		
				x2 = paw.__alpha[idx1]*refShape[v1].x + paw.__belta[idx1]*refShape[v2].x +  
					paw.__gamma[idx1]*refShape[v3].x;
				y2 = paw.__alpha[idx1]*refShape[v1].y + paw.__belta[idx1]*refShape[v2].y +  
					paw.__gamma[idx1]*refShape[v3].y;
				
				xby3 = 3*x; 
				idx2 = __cam.__paw.__rect[y2][x2];		idxby3 = 3*idx2;
				pimg[xby3] = fastt[idxby3];
				pimg[xby3+1] = fastt[idxby3+1];
				pimg[xby3+2] = fastt[idxby3+2];
			}
		}
	}
}
开发者ID:aodkrisda,项目名称:face-gesture-api,代码行数:70,代码来源:AAM_Basic.cpp

示例15: Fit

//============================================================================
int AAM_Basic::Fit(const IplImage* image, AAM_Shape& Shape, 
					int max_iter /* = 30 */,bool showprocess /* = false */)
{
	//intial some stuff
	double t = curtime;
	double e1, e2, e3;
	double k_v[6] = {-1,-1.15,-0.7,-0.5,-0.2,-0.0625};
	Shape.Point2Mat(__current_s);
	
	InitParams(image, __current_s, __current_c);
	__cam.__shape.CalcParams(__current_s, __p, __current_q);
	cvZero(__current_c);
	IplImage* Drawimg = 
		cvCreateImage(cvGetSize(image), image->depth, image->nChannels);	
	//mkdir("result");
	//char filename[100];
	//calculate error
	e3 = EstResidual(image, __current_c, __current_s, __delta_t);
	if(e3 == -1) return 0;

	int iter;

	//do a number of iteration until convergence
	for( iter = 0; iter <max_iter; iter++)
	{
		// predict pose and parameter update
		// __delta_t rosszul számolódik. Kiiratás ld. AAM_Sahpe::Mat2Point()
		//cvGEMM(__delta_t, __Rq, 1, NULL, 0, __delta_q, CV_GEMM_B_T);
		cvGEMM(__delta_t, __Rc, 1, NULL, 0, __delta_c, CV_GEMM_B_T);

		// if the prediction above didn't improve th fit,
        // try amplify and later damp the prediction
		for(int k = 0; k < 6; k++)
		{
			cvScaleAdd(__delta_q, cvScalar(k_v[k]), __current_q,  __update_q);
			cvScaleAdd(__delta_c, cvScalar(k_v[k]), __current_c,  __update_c);
			__cam.Clamp(__update_c);//constrain parameters				
			e2 = EstResidual(image, __update_c, __current_s, __delta_t);

			if(k==0) e1 = e2;
			else if(e2 != -1 && e2 < e1)break;
		}
		//check for convergence
		if((iter>max_iter/3&&fabs(e2-e3)<0.01*e3) || e2<0.001 ) 
		{
			break;
		}
		else if (cvNorm(__delta_c)<0.001 && cvNorm(__delta_q)<0.001) 
		{
			break;
		}
		else
		{
			cvCopy(__update_q, __current_q);
			cvCopy(__update_c, __current_c);
			e3 = e2;
		}
	}

	__cam.CalcShape(__current_s, __current_c, __current_q); 
	Shape.Mat2Point(__current_s);
	t = curtime - t;
	if( AAM_DEBUG_MODE ) printf("AAM-Basic Fitting time cost: %.3f\n", t);

	return iter;
}
开发者ID:aodkrisda,项目名称:face-gesture-api,代码行数:67,代码来源:AAM_Basic.cpp


注:本文中的AAM_Shape类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。