當前位置: 首頁>>編程示例 >>用法及示例精選 >>正文


R dtplyr slice.dtplyr_step 使用行的位置對行進行子集化

這些是 dplyr slice()slice_head()slice_tail()slice_min()slice_max()slice_sample() 泛型的方法。它們被轉換為 [.data.tablei 參數。

與 dplyr 不同,slice()(以及單獨的slice())每組返回相同的行數,無論索引是否出現在每組中。

用法

# S3 method for dtplyr_step
slice(.data, ..., .by = NULL)

# S3 method for dtplyr_step
slice_head(.data, ..., n, prop, by = NULL)

# S3 method for dtplyr_step
slice_tail(.data, ..., n, prop, by = NULL)

# S3 method for dtplyr_step
slice_min(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE)

# S3 method for dtplyr_step
slice_max(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE)

參數

.data

一個lazy_dt()

...

對於 slice() : < data-masking > 整數行值。

提供要保留的正值或要刪除的負值。提供的值必須全部為正值或全部為負值。超出輸入行數的索引將被靜默忽略。

對於 slice_*() ,這些參數將傳遞給方法。

.by, by

[Experimental]

< tidy-select > (可選)僅針對此操作選擇要分組的列,作為 group_by() 的替代方案。有關詳細信息和示例,請參閱?dplyr_by

n, prop

提供 n (行數)或 prop (要選擇的行的比例)。如果兩者均未提供,則將使用n = 1。如果 n 大於組中的行數(或 prop > 1 ),結果將被靜默截斷為組大小。 prop 將向零舍入以生成整數行。

將從組大小中減去負值nprop。例如,n = -2 具有 5 行一組,將選擇 5 - 2 = 3 行; prop = -0.25 有 8 行將選擇 8 * (1 - 0.25) = 6 行。

order_by

< data-masking > 用於排序的變量或變量函數。要按多個變量排序,請將它們包裝在 DataFrame 或小標題中。

with_ties

關係應該保持在一起嗎?默認值 TRUE 可能會返回比您請求的行數更多的行。使用FALSE 忽略聯係,並返回前n 行。

例子

library(dplyr, warn.conflicts = FALSE)

dt <- lazy_dt(mtcars)
dt %>% slice(1, 5, 10)
#> Source: local data table [3 x 11]
#> Call:   `_DT37`[{
#>     .rows <- c(1, 5, 10)
#>     .rows[between(.rows, -.N, .N)]
#> }]
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
#> 2  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#> 3  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
dt %>% slice(-(1:4))
#> Source: local data table [28 x 11]
#> Call:   `_DT37`[{
#>     .rows <- -(1:4)
#>     .rows[between(.rows, -.N, .N)]
#> }]
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#> 2  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
#> 3  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#> 4  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
#> 5  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
#> 6  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> # … with 22 more rows
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# First and last rows based on existing order
dt %>% slice_head(n = 5)
#> Source: local data table [5 x 11]
#> Call:   `_DT37`[rlang::seq2(1L, min(5L, .N))]
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  21       6   160   110  3.9   2.62  16.5     0     1     4     4
#> 2  21       6   160   110  3.9   2.88  17.0     0     1     4     4
#> 3  22.8     4   108    93  3.85  2.32  18.6     1     1     4     1
#> 4  21.4     6   258   110  3.08  3.22  19.4     1     0     3     1
#> 5  18.7     8   360   175  3.15  3.44  17.0     0     0     3     2
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
dt %>% slice_tail(n = 5)
#> Source: local data table [5 x 11]
#> Call:   `_DT37`[rlang::seq2(.N - min(5L, .N) + 1L, .N)]
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  30.4     4  95.1   113  3.77  1.51  16.9     1     1     5     2
#> 2  15.8     8 351     264  4.22  3.17  14.5     0     1     5     4
#> 3  19.7     6 145     175  3.62  2.77  15.5     0     1     5     6
#> 4  15       8 301     335  3.54  3.57  14.6     0     1     5     8
#> 5  21.4     4 121     109  4.11  2.78  18.6     1     1     4     2
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# Rows with minimum and maximum values of a variable
dt %>% slice_min(mpg, n = 5)
#> Source: local data table [5 x 11]
#> Call:   setorder(`_DT37`[rank(mpg, ties.method = "min", na.last = "keep") <= 
#>     min(5L, .N)], mpg, na.last = TRUE)
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  10.4     8   472   205  2.93  5.25  18.0     0     0     3     4
#> 2  10.4     8   460   215  3     5.42  17.8     0     0     3     4
#> 3  13.3     8   350   245  3.73  3.84  15.4     0     0     3     4
#> 4  14.3     8   360   245  3.21  3.57  15.8     0     0     3     4
#> 5  14.7     8   440   230  3.23  5.34  17.4     0     0     3     4
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
dt %>% slice_max(mpg, n = 5)
#> Source: local data table [5 x 11]
#> Call:   setorder(`_DT37`[rank(desc(mpg), ties.method = "min", na.last = "keep") <= 
#>     min(5L, .N)], -mpg, na.last = TRUE)
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  33.9     4  71.1    65  4.22  1.84  19.9     1     1     4     1
#> 2  32.4     4  78.7    66  4.08  2.2   19.5     1     1     4     1
#> 3  30.4     4  75.7    52  4.93  1.62  18.5     1     1     4     2
#> 4  30.4     4  95.1   113  3.77  1.51  16.9     1     1     5     2
#> 5  27.3     4  79      66  4.08  1.94  18.9     1     1     4     1
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# slice_min() and slice_max() may return more rows than requested
# in the presence of ties. Use with_ties = FALSE to suppress
dt %>% slice_min(cyl, n = 1)
#> Source: local data table [11 x 11]
#> Call:   setorder(`_DT37`[rank(cyl, ties.method = "min", na.last = "keep") <= 
#>     min(1L, .N)], cyl, na.last = TRUE)
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  22.8     4 108      93  3.85  2.32  18.6     1     1     4     1
#> 2  24.4     4 147.     62  3.69  3.19  20       1     0     4     2
#> 3  22.8     4 141.     95  3.92  3.15  22.9     1     0     4     2
#> 4  32.4     4  78.7    66  4.08  2.2   19.5     1     1     4     1
#> 5  30.4     4  75.7    52  4.93  1.62  18.5     1     1     4     2
#> 6  33.9     4  71.1    65  4.22  1.84  19.9     1     1     4     1
#> # … with 5 more rows
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
dt %>% slice_min(cyl, n = 1, with_ties = FALSE)
#> Source: local data table [1 x 11]
#> Call:   setorder(`_DT37`[rank(cyl, ties.method = "first", na.last = "keep") <= 
#>     min(1L, .N)], cyl, na.last = TRUE)
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  22.8     4   108    93  3.85  2.32  18.6     1     1     4     1
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# slice_sample() allows you to random select with or without replacement
dt %>% slice_sample(n = 5)
#> Source: local data table [5 x 11]
#> Call:   `_DT37`[sample.int(.N, min(min(5L, .N), .N))]
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  15.8     8 351     264  4.22  3.17  14.5     0     1     5     4
#> 2  30.4     4  95.1   113  3.77  1.51  16.9     1     1     5     2
#> 3  21.4     6 258     110  3.08  3.22  19.4     1     0     3     1
#> 4  33.9     4  71.1    65  4.22  1.84  19.9     1     1     4     1
#> 5  14.7     8 440     230  3.23  5.34  17.4     0     0     3     4
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
dt %>% slice_sample(n = 5, replace = TRUE)
#> Source: local data table [5 x 11]
#> Call:   `_DT37`[sample.int(.N, min(5L, .N), replace = TRUE)]
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  33.9     4  71.1    65  4.22  1.84  19.9     1     1     4     1
#> 2  15.5     8 318     150  2.76  3.52  16.9     0     0     3     2
#> 3  22.8     4 141.     95  3.92  3.15  22.9     1     0     4     2
#> 4  17.8     6 168.    123  3.92  3.44  18.9     1     0     4     4
#> 5  21.4     6 258     110  3.08  3.22  19.4     1     0     3     1
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# you can optionally weight by a variable - this code weights by the
# physical weight of the cars, so heavy cars are more likely to get
# selected
dt %>% slice_sample(weight_by = wt, n = 5)
#> Source: local data table [5 x 11]
#> Call:   `_DT37`[sample.int(.N, min(min(5L, .N), .N), prob = wt)]
#> 
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  18.7     8   360   175  3.15  3.44  17.0     0     0     3     2
#> 2  10.4     8   460   215  3     5.42  17.8     0     0     3     4
#> 3  13.3     8   350   245  3.73  3.84  15.4     0     0     3     4
#> 4  10.4     8   472   205  2.93  5.25  18.0     0     0     3     4
#> 5  21.4     6   258   110  3.08  3.22  19.4     1     0     3     1
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

相關用法


注:本文由純淨天空篩選整理自Hadley Wickham等大神的英文原創作品 Subset rows using their positions。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。