finalize_*
函數采用調整參數值的列表或小標題,並使用這些值更新對象。
參數
- x
-
配方、
parsnip
模型規範或工作流程。 - parameters
-
參數值的列表或 1 行小標題。請注意,tibble 的列名稱應該是附加到
tune()
的id
字段。例如,在下麵的Examples
部分中,模型具有tune("K")
。在這種情況下,參數 tibble 應為 "K" 而不是 "neighbors"。
例子
data("example_ames_knn")
library(parsnip)
knn_model <-
nearest_neighbor(
mode = "regression",
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune()
) %>%
set_engine("kknn")
lowest_rmse <- select_best(ames_grid_search, metric = "rmse")
lowest_rmse
#> # A tibble: 1 × 6
#> K weight_func dist_power lon lat .config
#> <int> <chr> <dbl> <int> <int> <chr>
#> 1 33 triweight 0.511 10 3 Preprocessor10_Model1
knn_model
#> K-Nearest Neighbor Model Specification (regression)
#>
#> Main Arguments:
#> neighbors = tune("K")
#> weight_func = tune()
#> dist_power = tune()
#>
#> Computational engine: kknn
#>
finalize_model(knn_model, lowest_rmse)
#> K-Nearest Neighbor Model Specification (regression)
#>
#> Main Arguments:
#> neighbors = 33
#> weight_func = triweight
#> dist_power = 0.511191629664972
#>
#> Computational engine: kknn
#>
相關用法
- R tune filter_parameters 刪除一些調整參數結果
- R tune fit_best 將模型擬合到數值最優配置
- R tune fit_resamples 通過重采樣擬合多個模型
- R tune coord_obs_pred 對觀察值與預測值的繪圖使用相同的比例
- R tune extract-tune 提取調整對象的元素
- R tune conf_mat_resampled 計算重采樣的平均混淆矩陣
- R tune tune_bayes 模型參數的貝葉斯優化。
- R tune collect_predictions 獲取並格式化由調整函數產生的結果
- R tune show_best 研究最佳調整參數
- R tune expo_decay 指數衰減函數
- R tune merge.recipe 將參數網格值合並到對象中
- R tune autoplot.tune_results 繪圖調整搜索結果
- R tune tune_grid 通過網格搜索進行模型調整
- R tune dot-use_case_weights_with_yardstick 確定案例權重是否應傳遞至標準
- R tune message_wrap 寫一條尊重線寬的消息
- R tune prob_improve 用於對參數組合進行評分的獲取函數
- R tune last_fit 將最終的最佳模型擬合到訓練集並評估測試集
- R update_PACKAGES 更新現有的 PACKAGES 文件
- R textrecipes tokenlist 創建令牌對象
- R themis smotenc SMOTENC算法
- R print.via.format 打印實用程序
- R tibble tibble 構建 DataFrame 架
- R tidyr separate_rows 將折疊的列分成多行
- R textrecipes step_lemma 標記變量的詞形還原
- R textrecipes show_tokens 顯示配方的令牌輸出
注:本文由純淨天空篩選整理自Max Kuhn等大神的英文原創作品 Splice final parameters into objects。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。