當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R dplyr filter_all 在選擇的變量中進行過濾


[Superseded]

作用域動詞( _if_at_all )已被現有動詞中的 if_all()if_any() 取代。有關詳細信息,請參閱vignette("colwise")

這些scoped過濾動詞將謂詞表達式應用於變量的選擇。謂詞表達式應使用 all_vars()any_vars() 引用,並應提及代詞 . 來引用變量。

用法

filter_all(.tbl, .vars_predicate, .preserve = FALSE)

filter_if(.tbl, .predicate, .vars_predicate, .preserve = FALSE)

filter_at(.tbl, .vars, .vars_predicate, .preserve = FALSE)

參數

.tbl

tbl 對象。

.vars_predicate

all_vars()any_vars() 返回的帶引號的謂詞表達式。

也可以是函數或purrr-like公式。在這種情況下,默認情況下會取結果的交集,並且當前無法請求並集。

.preserve

FALSE(默認)時,根據結果數據重新計算分組結構,否則保持原樣。

.predicate

應用於列或邏輯向量的謂詞函數。選擇.predicate 為或返回TRUE 的變量。該參數傳遞給rlang::as_function(),因此支持quosure-style lambda 函數和表示函數名稱的字符串。

.vars

vars() 生成的列列表、列名稱的字符向量、列位置的數值向量或 NULL

對變量進行分組

考慮作為選擇一部分的分組變量來確定過濾的行。

例子

# While filter() accepts expressions with specific variables, the
# scoped filter verbs take an expression with the pronoun `.` and
# replicate it over all variables. This expression should be quoted
# with all_vars() or any_vars():
all_vars(is.na(.))
#> <predicate intersection>
#> <quosure>
#> expr: ^is.na(.)
#> env:  0x555567667cd0
any_vars(is.na(.))
#> <predicate union>
#> <quosure>
#> expr: ^is.na(.)
#> env:  0x555567667cd0


# You can take the intersection of the replicated expressions:
filter_all(mtcars, all_vars(. > 150))
#>  [1] mpg  cyl  disp hp   drat wt   qsec vs   am   gear carb
#> <0 rows> (or 0-length row.names)
# ->
filter(mtcars, if_all(everything(), ~ .x > 150))
#>  [1] mpg  cyl  disp hp   drat wt   qsec vs   am   gear carb
#> <0 rows> (or 0-length row.names)

# Or the union:
filter_all(mtcars, any_vars(. > 150))
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
# ->
filter(mtcars, if_any(everything(), ~ . > 150))
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8


# You can vary the selection of columns on which to apply the
# predicate. filter_at() takes a vars() specification:
filter_at(mtcars, vars(starts_with("d")), any_vars((. %% 2) == 0))
#>                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
#> Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8  318 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8  304 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8  400 175 3.08 3.845 17.05  0  0    3    2
# ->
filter(mtcars, if_any(starts_with("d"), ~ (.x %% 2) == 0))
#>                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
#> Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8  318 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8  304 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8  400 175 3.08 3.845 17.05  0  0    3    2

# And filter_if() selects variables with a predicate function:
filter_if(mtcars, ~ all(floor(.) == .), all_vars(. != 0))
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
# ->
is_int <- function(x) all(floor(x) == x)
filter(mtcars, if_all(where(is_int), ~ .x != 0))
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
源代碼:R/colwise-filter.R

相關用法


注:本文由純淨天空篩選整理自Hadley Wickham等大神的英文原創作品 Filter within a selection of variables。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。