作用域動詞( _if
、 _at
、 _all
)已被現有動詞中的 if_all()
或 if_any()
取代。有關詳細信息,請參閱vignette("colwise")
。
這些scoped過濾動詞將謂詞表達式應用於變量的選擇。謂詞表達式應使用 all_vars()
或 any_vars()
引用,並應提及代詞 .
來引用變量。
用法
filter_all(.tbl, .vars_predicate, .preserve = FALSE)
filter_if(.tbl, .predicate, .vars_predicate, .preserve = FALSE)
filter_at(.tbl, .vars, .vars_predicate, .preserve = FALSE)
參數
- .tbl
-
tbl
對象。 - .vars_predicate
-
由
all_vars()
或any_vars()
返回的帶引號的謂詞表達式。也可以是函數或purrr-like公式。在這種情況下,默認情況下會取結果的交集,並且當前無法請求並集。
- .preserve
-
當
FALSE
(默認)時,根據結果數據重新計算分組結構,否則保持原樣。 - .predicate
-
應用於列或邏輯向量的謂詞函數。選擇
.predicate
為或返回TRUE
的變量。該參數傳遞給rlang::as_function()
,因此支持quosure-style lambda 函數和表示函數名稱的字符串。 - .vars
-
由
vars()
生成的列列表、列名稱的字符向量、列位置的數值向量或NULL
。
例子
# While filter() accepts expressions with specific variables, the
# scoped filter verbs take an expression with the pronoun `.` and
# replicate it over all variables. This expression should be quoted
# with all_vars() or any_vars():
all_vars(is.na(.))
#> <predicate intersection>
#> <quosure>
#> expr: ^is.na(.)
#> env: 0x555567667cd0
any_vars(is.na(.))
#> <predicate union>
#> <quosure>
#> expr: ^is.na(.)
#> env: 0x555567667cd0
# You can take the intersection of the replicated expressions:
filter_all(mtcars, all_vars(. > 150))
#> [1] mpg cyl disp hp drat wt qsec vs am gear carb
#> <0 rows> (or 0-length row.names)
# ->
filter(mtcars, if_all(everything(), ~ .x > 150))
#> [1] mpg cyl disp hp drat wt qsec vs am gear carb
#> <0 rows> (or 0-length row.names)
# Or the union:
filter_all(mtcars, any_vars(. > 150))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# ->
filter(mtcars, if_any(everything(), ~ . > 150))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# You can vary the selection of columns on which to apply the
# predicate. filter_at() takes a vars() specification:
filter_at(mtcars, vars(starts_with("d")), any_vars((. %% 2) == 0))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
#> Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#> Dodge Challenger 15.5 8 318 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2
# ->
filter(mtcars, if_any(starts_with("d"), ~ (.x %% 2) == 0))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
#> Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#> Dodge Challenger 15.5 8 318 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2
# And filter_if() selects variables with a predicate function:
filter_if(mtcars, ~ all(floor(.) == .), all_vars(. != 0))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
# ->
is_int <- function(x) all(floor(x) == x)
filter(mtcars, if_all(where(is_int), ~ .x != 0))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
相關用法
- R dplyr filter 保留符合條件的行
- R dplyr filter-joins 過濾連接
- R dplyr group_trim 修剪分組結構
- R dplyr slice 使用行的位置對行進行子集化
- R dplyr copy_to 將本地數據幀複製到遠程src
- R dplyr sample_n 從表中采樣 n 行
- R dplyr consecutive_id 為連續組合生成唯一標識符
- R dplyr row_number 整數排名函數
- R dplyr band_members 樂隊成員
- R dplyr mutate-joins 變異連接
- R dplyr nth 從向量中提取第一個、最後一個或第 n 個值
- R dplyr coalesce 找到第一個非缺失元素
- R dplyr group_split 按組分割 DataFrame
- R dplyr mutate 創建、修改和刪除列
- R dplyr order_by 用於排序窗口函數輸出的輔助函數
- R dplyr context 有關“當前”組或變量的信息
- R dplyr percent_rank 比例排名函數
- R dplyr recode 重新編碼值
- R dplyr starwars 星球大戰人物
- R dplyr desc 降序
- R dplyr between 檢測值落在指定範圍內的位置
- R dplyr cumall 任何、全部和平均值的累積版本
- R dplyr group_map 對每個組應用一個函數
- R dplyr do 做任何事情
- R dplyr nest_join 嵌套連接
注:本文由純淨天空篩選整理自Hadley Wickham等大神的英文原創作品 Filter within a selection of variables。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。