當前位置: 首頁>>編程示例 >>用法及示例精選 >>正文


Python SciPy contingency.association用法及代碼示例

本文簡要介紹 python 語言中 scipy.stats.contingency.association 的用法。

用法:

scipy.stats.contingency.association(observed, method='cramer', correction=False, lambda_=None)#

計算兩個名義變量之間的關聯程度。

該函數提供了根據二維列聯表中給出的數據計算兩個名義變量之間關聯的三個度量之一的選項:Tschuprow’s T、Pearson’s Contingency Coefficient 和 Cramer’s V。

參數

observed 類數組

觀察值數組

method {“cramer”, “tschuprow”, “pearson”}(默認 = “cramer”)

關聯檢驗統計量。

correction 布爾型,可選

繼承自scipy.stats.contingency.chi2_contingency()

lambda_ float 或 str,可選

繼承自scipy.stats.contingency.chi2_contingency()

返回

statistic 浮點數

檢驗統計量

注意

Cramer 的 V、Tschuprow 的 T 和 Pearson 的列聯係數都衡量兩個名義或有序變量的相關程度,或它們的關聯程度。這與相關性不同,盡管許多人經常錯誤地認為它們是等價的。相關性衡量兩個變量以何種方式相關,而關聯性衡量變量的相關程度。因此,關聯不包含自變量,而是對獨立性的測試。 1.0 表示完全關聯,0.0 表示變量沒有關聯。

Cramer 的 V 和 Tschuprow 的 T 都是 phi 係數的擴展。此外,由於 Cramer 的 V 和 Tschuprow 的 T 之間的密切關係,返回的值通常可以相似甚至相等。隨著陣列形狀從 2x2 發散,它們可能會發散得更多。

參考

[1]

“Tschuprow 的 T”,https://en.wikipedia.org/wiki/Tschuprow’s_T

[2]

Tschuprow, A. A. (1939) 相關數學理論的原理;由 M. Kantorowitsch 翻譯。 W.霍奇公司

[3]

“克萊默的 V”,https://en.wikipedia.org/wiki/Cramer’s_V

[4]

“名義關聯:Phi 和 Cramer’s V”,http://www.people.vcu.edu/~pdattalo/702SuppRead/MeasAssoc/NominalAssoc.html

[5]

保羅·金裏奇,“Association Between Variables”,http://uregina.ca/~gingrich/ch11a.pdf

例子

一個 4x2 列聯表的例子:

>>> import numpy as np
>>> from scipy.stats.contingency import association
>>> obs4x2 = np.array([[100, 150], [203, 322], [420, 700], [320, 210]])

皮爾遜列聯係數

>>> association(obs4x2, method="pearson")
0.18303298140595667

克萊默的 V

>>> association(obs4x2, method="cramer")
0.18617813077483678

楚普羅的 T

>>> association(obs4x2, method="tschuprow")
0.14146478765062995

相關用法


注:本文由純淨天空篩選整理自scipy.org大神的英文原創作品 scipy.stats.contingency.association。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。