本文簡要介紹
pyspark.mllib.evaluation.MulticlassMetrics
的用法。用法:
class pyspark.mllib.evaluation.MulticlassMetrics(predictionAndLabels)
多類分類的評估器。
1.4.0 版中的新函數。
- predictionAndLabels:
pyspark.RDD
預測、標簽、可選權重和可選概率的 RDD。
- predictionAndLabels:
參數:
例子:
>>> predictionAndLabels = sc.parallelize([(0.0, 0.0), (0.0, 1.0), (0.0, 0.0), ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)]) >>> metrics = MulticlassMetrics(predictionAndLabels) >>> metrics.confusionMatrix().toArray() array([[ 2., 1., 1.], [ 1., 3., 0.], [ 0., 0., 1.]]) >>> metrics.falsePositiveRate(0.0) 0.2... >>> metrics.precision(1.0) 0.75... >>> metrics.recall(2.0) 1.0... >>> metrics.fMeasure(0.0, 2.0) 0.52... >>> metrics.accuracy 0.66... >>> metrics.weightedFalsePositiveRate 0.19... >>> metrics.weightedPrecision 0.68... >>> metrics.weightedRecall 0.66... >>> metrics.weightedFMeasure() 0.66... >>> metrics.weightedFMeasure(2.0) 0.65... >>> predAndLabelsWithOptWeight = sc.parallelize([(0.0, 0.0, 1.0), (0.0, 1.0, 1.0), ... (0.0, 0.0, 1.0), (1.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), ... (2.0, 2.0, 1.0), (2.0, 0.0, 1.0)]) >>> metrics = MulticlassMetrics(predAndLabelsWithOptWeight) >>> metrics.confusionMatrix().toArray() array([[ 2., 1., 1.], [ 1., 3., 0.], [ 0., 0., 1.]]) >>> metrics.falsePositiveRate(0.0) 0.2... >>> metrics.precision(1.0) 0.75... >>> metrics.recall(2.0) 1.0... >>> metrics.fMeasure(0.0, 2.0) 0.52... >>> metrics.accuracy 0.66... >>> metrics.weightedFalsePositiveRate 0.19... >>> metrics.weightedPrecision 0.68... >>> metrics.weightedRecall 0.66... >>> metrics.weightedFMeasure() 0.66... >>> metrics.weightedFMeasure(2.0) 0.65... >>> predictionAndLabelsWithProbabilities = sc.parallelize([ ... (1.0, 1.0, 1.0, [0.1, 0.8, 0.1]), (0.0, 2.0, 1.0, [0.9, 0.05, 0.05]), ... (0.0, 0.0, 1.0, [0.8, 0.2, 0.0]), (1.0, 1.0, 1.0, [0.3, 0.65, 0.05])]) >>> metrics = MulticlassMetrics(predictionAndLabelsWithProbabilities) >>> metrics.logLoss() 0.9682...
相關用法
- Python pyspark MulticlassClassificationEvaluator用法及代碼示例
- Python pyspark MultiIndex.size用法及代碼示例
- Python pyspark MultiIndex.hasnans用法及代碼示例
- Python pyspark MultiIndex.to_numpy用法及代碼示例
- Python pyspark MultiIndex.levshape用法及代碼示例
- Python pyspark MultiIndex.max用法及代碼示例
- Python pyspark MultiIndex.drop用法及代碼示例
- Python pyspark MultiIndex.min用法及代碼示例
- Python pyspark MultiIndex.unique用法及代碼示例
- Python pyspark MultiIndex.rename用法及代碼示例
- Python pyspark MultiIndex.value_counts用法及代碼示例
- Python pyspark MultiIndex.values用法及代碼示例
- Python pyspark MultiIndex.difference用法及代碼示例
- Python pyspark MultiIndex.sort_values用法及代碼示例
- Python pyspark MultiIndex.spark.transform用法及代碼示例
- Python pyspark MultiIndex.T用法及代碼示例
- Python pyspark MultiIndex用法及代碼示例
- Python pyspark MultiIndex.ndim用法及代碼示例
- Python pyspark MultiIndex.copy用法及代碼示例
- Python pyspark MultiIndex.to_frame用法及代碼示例
- Python pyspark MultiIndex.shape用法及代碼示例
- Python pyspark MultilabelClassificationEvaluator用法及代碼示例
- Python pyspark MultiIndex.equals用法及代碼示例
- Python pyspark MultiIndex.empty用法及代碼示例
- Python pyspark MultiIndex.to_series用法及代碼示例
注:本文由純淨天空篩選整理自spark.apache.org大神的英文原創作品 pyspark.mllib.evaluation.MulticlassMetrics。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。