用法:
mxnet.symbol.Flatten(data=None, name=None, attr=None, out=None, **kwargs)
通過折疊更高維度將輸入數組展平為二維數組。 .. 注意::
Flatten
已棄用。請改用flatten
。對於形狀為(d1, d2, ..., dk)
的輸入數組,flatten
操作將輸入數組重塑為形狀為(d1, d2*...*dk)
的輸出數組。請注意,此函數的行為不同於 numpy.ndarray.flatten,後者的行為類似於 mxnet.ndarray reshape((-1,))。例子:x = [[ [1,2,3], [4,5,6], [7,8,9] ], [ [1,2,3], [4,5,6], [7,8,9] ]], flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
例子:
Flatten 通常在
FullyConnected
之前應用,將卷積層產生的 4D 張量重塑為 2D 矩陣:>>> data = Variable('data') # say this is 4D from some conv/pool >>> flatten = Flatten(data=data, name='flat') # now this is 2D >>> SymbolDoc.get_output_shape(flatten, data=(2, 3, 4, 5)) {'flat_output': (2L, 60L)}
>>> test_dims = [(2, 3, 4, 5), (2, 3), (2,)] >>> op = Flatten(name='flat') >>> for dims in test_dims: ... x = test_utils.random_arrays(dims) ... y = test_utils.simple_forward(op, flat_data=x) ... y_np = x.reshape((dims[0], np.prod(dims[1:]).astype('int32'))) ... print('%s: %s' % (dims, test_utils.almost_equal(y, y_np))) (2, 3, 4, 5): True (2, 3): True (2,): True
相關用法
- Python mxnet.symbol.FullyConnected用法及代碼示例
- Python mxnet.symbol.op.broadcast_logical_xor用法及代碼示例
- Python mxnet.symbol.op.log_softmax用法及代碼示例
- Python mxnet.symbol.space_to_depth用法及代碼示例
- Python mxnet.symbol.random_pdf_poisson用法及代碼示例
- Python mxnet.symbol.argmin用法及代碼示例
- Python mxnet.symbol.linalg_potrf用法及代碼示例
- Python mxnet.symbol.contrib.dgl_graph_compact用法及代碼示例
- Python mxnet.symbol.op.SliceChannel用法及代碼示例
- Python mxnet.symbol.op.linalg_trmm用法及代碼示例
- Python mxnet.symbol.sparse.exp用法及代碼示例
- Python mxnet.symbol.sparse.zeros_like用法及代碼示例
- Python mxnet.symbol.Symbol.get_children用法及代碼示例
- Python mxnet.symbol.op.broadcast_plus用法及代碼示例
- Python mxnet.symbol.linalg.makediag用法及代碼示例
- Python mxnet.symbol.op.broadcast_mul用法及代碼示例
- Python mxnet.symbol.fix用法及代碼示例
- Python mxnet.symbol.broadcast_hypot用法及代碼示例
- Python mxnet.symbol.linalg_gelqf用法及代碼示例
- Python mxnet.symbol.op.reciprocal用法及代碼示例
注:本文由純淨天空篩選整理自apache.org大神的英文原創作品 mxnet.symbol.Flatten。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。