當前位置: 首頁>>代碼示例>>Python>>正文


Python feature_selection.mutual_info_regression方法代碼示例

本文整理匯總了Python中sklearn.feature_selection.mutual_info_regression方法的典型用法代碼示例。如果您正苦於以下問題:Python feature_selection.mutual_info_regression方法的具體用法?Python feature_selection.mutual_info_regression怎麽用?Python feature_selection.mutual_info_regression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.feature_selection的用法示例。


在下文中一共展示了feature_selection.mutual_info_regression方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: predict

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import mutual_info_regression [as 別名]
def predict(self, a, b):
        """ Compute the test statistic

        Args:
            a (array-like): Variable 1
            b (array-like): Variable 2

        Returns:
            float: test statistic
        """
        a = np.array(a).reshape((-1, 1))
        b = np.array(b).reshape((-1, 1))
        return (mutual_info_regression(a, b.reshape((-1,))) + mutual_info_regression(b, a.reshape((-1,))))/2 
開發者ID:FenTechSolutions,項目名稱:CausalDiscoveryToolbox,代碼行數:15,代碼來源:numerical.py

示例2: feature_importance_regression

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import mutual_info_regression [as 別名]
def feature_importance_regression(features, target, n_neighbors=3, random_state=None):

    cont = features.select_dtypes(include=[np.floating])
    disc = features.select_dtypes(include=[np.integer, np.bool])

    cont_imp = pd.DataFrame(index=cont.columns)
    disc_imp = pd.DataFrame(index=disc.columns)

    # Continuous features
    if cont_imp.index.size > 0:

        # Pearson correlation
        pearson = np.array([stats.pearsonr(feature, target) for _, feature in cont.iteritems()])
        cont_imp['pearson_r'] = pearson[:, 0]
        cont_imp['pearson_r_p_value'] = pearson[:, 1]

        # Mutual information
        mut_inf = feature_selection.mutual_info_regression(cont, target, discrete_features=False,
                                                           n_neighbors=n_neighbors,
                                                           random_state=random_state)
        cont_imp['mutual_information'] = mut_inf

    # Discrete features
    if disc_imp.index.size > 0:

        # F-test
        f_tests = defaultdict(dict)

        for feature in disc.columns:
            groups = [target[idxs] for idxs in disc.groupby(feature).groups.values()]
            statistic, p_value = stats.f_oneway(*groups)
            f_tests[feature]['f_statistic'] = statistic
            f_tests[feature]['f_p_value'] = p_value

        f_tests_df = pd.DataFrame.from_dict(f_tests, orient='index')
        disc_imp['f_statistic'] = f_tests_df['f_statistic']
        disc_imp['f_p_value'] = f_tests_df['f_p_value']

        # Mutual information
        mut_inf = feature_selection.mutual_info_regression(disc, target, discrete_features=True,
                                                           n_neighbors=n_neighbors,
                                                           random_state=random_state)
        disc_imp['mutual_information'] = mut_inf

    return cont_imp, disc_imp 
開發者ID:MaxHalford,項目名稱:xam,代碼行數:47,代碼來源:eda.py


注:本文中的sklearn.feature_selection.mutual_info_regression方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。