當前位置: 首頁>>代碼示例>>Python>>正文


Python feature_selection.VarianceThreshold方法代碼示例

本文整理匯總了Python中sklearn.feature_selection.VarianceThreshold方法的典型用法代碼示例。如果您正苦於以下問題:Python feature_selection.VarianceThreshold方法的具體用法?Python feature_selection.VarianceThreshold怎麽用?Python feature_selection.VarianceThreshold使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.feature_selection的用法示例。


在下文中一共展示了feature_selection.VarianceThreshold方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: low_variance_feature_selection

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def low_variance_feature_selection(X, threshold):
    """
    This function implements the low_variance feature selection (existing method in scikit-learn)

    Input
    -----
    X: {numpy array}, shape (n_samples, n_features)
        input data
    p:{float}
        parameter used to calculate the threshold(threshold = p*(1-p))

    Output
    ------
    X_new: {numpy array}, shape (n_samples, n_selected_features)
        data with selected features
    """
    sel = VarianceThreshold(threshold)
    return sel.fit_transform(X) 
開發者ID:jundongl,項目名稱:scikit-feature,代碼行數:20,代碼來源:low_variance.py

示例2: test_objectmapper

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.feature_selection.GenericUnivariateSelect,
                      fs.GenericUnivariateSelect)
        self.assertIs(df.feature_selection.SelectPercentile,
                      fs.SelectPercentile)
        self.assertIs(df.feature_selection.SelectKBest, fs.SelectKBest)
        self.assertIs(df.feature_selection.SelectFpr, fs.SelectFpr)
        self.assertIs(df.feature_selection.SelectFromModel,
                      fs.SelectFromModel)
        self.assertIs(df.feature_selection.SelectFdr, fs.SelectFdr)
        self.assertIs(df.feature_selection.SelectFwe, fs.SelectFwe)
        self.assertIs(df.feature_selection.RFE, fs.RFE)
        self.assertIs(df.feature_selection.RFECV, fs.RFECV)
        self.assertIs(df.feature_selection.VarianceThreshold,
                      fs.VarianceThreshold) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:18,代碼來源:test_feature_selection.py

示例3: test_same_variances

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def test_same_variances(self):
        local = VarianceThreshold()
        dist = SparkVarianceThreshold()

        shapes = [((10, 5), None),
                  ((1e3, 20), None),
                  ((1e3, 20), 100),
                  ((1e4, 100), None),
                  ((1e4, 100), 600)]

        for shape, block_size in shapes:
            X_dense, X_dense_rdd = self.make_dense_rdd()
            X_sparse, X_sparse_rdd = self.make_sparse_rdd()
            Z = DictRDD([X_sparse_rdd, X_dense_rdd], columns=('X', 'Y'))

            local.fit(X_dense)
            dist.fit(X_dense_rdd)
            assert_array_almost_equal(local.variances_, dist.variances_)

            local.fit(X_sparse)
            dist.fit(X_sparse_rdd)
            assert_array_almost_equal(local.variances_, dist.variances_)

            dist.fit(Z)
            assert_array_almost_equal(local.variances_, dist.variances_) 
開發者ID:lensacom,項目名稱:sparkit-learn,代碼行數:27,代碼來源:test_variance_threshold.py

示例4: test_same_transform_result

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def test_same_transform_result(self):
        local = VarianceThreshold()
        dist = SparkVarianceThreshold()

        X_dense, X_dense_rdd = self.make_dense_rdd()
        X_sparse, X_sparse_rdd = self.make_sparse_rdd()
        Z_rdd = DictRDD([X_sparse_rdd, X_dense_rdd], columns=('X', 'Y'))

        result_local = local.fit_transform(X_dense)
        result_dist = dist.fit_transform(X_dense_rdd)
        assert_true(check_rdd_dtype(result_dist, (np.ndarray,)))
        assert_array_almost_equal(result_local, result_dist.toarray())

        result_local = local.fit_transform(X_sparse)
        result_dist = dist.fit_transform(X_sparse_rdd)
        assert_true(check_rdd_dtype(result_dist, (sp.spmatrix,)))
        assert_array_almost_equal(result_local.toarray(),
                                  result_dist.toarray())

        result_dist = dist.fit_transform(Z_rdd)[:, 'X']
        assert_true(check_rdd_dtype(result_dist, (sp.spmatrix,)))
        assert_array_almost_equal(result_local.toarray(),
                                  result_dist.toarray()) 
開發者ID:lensacom,項目名稱:sparkit-learn,代碼行數:25,代碼來源:test_variance_threshold.py

示例5: test_same_transform_with_treshold

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def test_same_transform_with_treshold(self):
        local = VarianceThreshold(.03)
        dist = SparkVarianceThreshold(.03)

        X_dense, X_dense_rdd = self.make_dense_rdd()
        X_sparse, X_sparse_rdd = self.make_sparse_rdd()
        Z_rdd = DictRDD([X_sparse_rdd, X_dense_rdd], columns=('X', 'Y'))

        result_local = local.fit_transform(X_dense)
        result_dist = dist.fit_transform(X_dense_rdd)
        assert_true(check_rdd_dtype(result_dist, (np.ndarray,)))
        assert_array_almost_equal(result_local, result_dist.toarray())

        result_local = local.fit_transform(X_sparse)
        result_dist = dist.fit_transform(X_sparse_rdd)
        assert_true(check_rdd_dtype(result_dist, (sp.spmatrix,)))
        assert_array_almost_equal(result_local.toarray(),
                                  result_dist.toarray())

        result_dist = dist.fit_transform(Z_rdd)[:, 'X']
        assert_true(check_rdd_dtype(result_dist, (sp.spmatrix,)))
        assert_array_almost_equal(result_local.toarray(),
                                  result_dist.toarray()) 
開發者ID:lensacom,項目名稱:sparkit-learn,代碼行數:25,代碼來源:test_variance_threshold.py

示例6: test_pipeline_same_results

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def test_pipeline_same_results(self):
        X, y, Z = self.make_classification(2, 10000, 2000)

        loc_clf = LogisticRegression()
        loc_filter = VarianceThreshold()
        loc_pipe = Pipeline([
            ('threshold', loc_filter),
            ('logistic', loc_clf)
        ])

        dist_clf = SparkLogisticRegression()
        dist_filter = SparkVarianceThreshold()
        dist_pipe = SparkPipeline([
            ('threshold', dist_filter),
            ('logistic', dist_clf)
        ])

        dist_filter.fit(Z)
        loc_pipe.fit(X, y)
        dist_pipe.fit(Z, logistic__classes=np.unique(y))

        assert_true(np.mean(np.abs(
            loc_pipe.predict(X) -
            np.concatenate(dist_pipe.predict(Z[:, 'X']).collect())
        )) < 0.1) 
開發者ID:lensacom,項目名稱:sparkit-learn,代碼行數:27,代碼來源:test_pipeline.py

示例7: test_zero_variance

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def test_zero_variance():
    # Test VarianceThreshold with default setting, zero variance.

    for X in [data, csr_matrix(data), csc_matrix(data), bsr_matrix(data)]:
        sel = VarianceThreshold().fit(X)
        assert_array_equal([0, 1, 3, 4], sel.get_support(indices=True))

    assert_raises(ValueError, VarianceThreshold().fit, [[0, 1, 2, 3]])
    assert_raises(ValueError, VarianceThreshold().fit, [[0, 1], [0, 1]]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_variance_threshold.py

示例8: test_variance_threshold

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def test_variance_threshold():
    # Test VarianceThreshold with custom variance.
    for X in [data, csr_matrix(data)]:
        X = VarianceThreshold(threshold=.4).fit_transform(X)
        assert_equal((len(data), 1), X.shape) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:7,代碼來源:test_variance_threshold.py

示例9: __init__

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def __init__(self, threshold):
        self.selector = fs.VarianceThreshold(threshold=threshold) 
開發者ID:minerva-ml,項目名稱:open-solution-value-prediction,代碼行數:4,代碼來源:data_cleaning.py

示例10: __init__

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def __init__(self, *args, **kwargs):
        """ Assemble Neural network or SVM using sklearn pipeline """

        # Cherrypick arguments for model. Exclude 'steps', which is pipeline argument
        local_kwargs = {key: kwargs.pop(key) for key in list(kwargs.keys())
                        if key != 'steps' and '__' not in key}

        if self._model is None:
            raise ValueError('Model not specified!')
        model = self._model(*args, **local_kwargs)

        self.pipeline = Pipeline([('empty_dims_remover', VarianceThreshold()),
                                  ('scaler', StandardScaler()),
                                  ('model', model)]).set_params(**kwargs) 
開發者ID:oddt,項目名稱:oddt,代碼行數:16,代碼來源:classifiers.py

示例11: __init__

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def __init__(self, *args, **kwargs):
        """ Assemble Neural network or SVM using sklearn pipeline """
        # Cherrypick arguments for model. Exclude 'steps', which is pipeline argument
        local_kwargs = {key: kwargs.pop(key) for key in list(kwargs.keys())
                        if key != 'steps' and '__' not in key}

        if self._model is None:
            raise ValueError('Model not specified!')
        model = self._model(*args, **local_kwargs)

        self.pipeline = Pipeline([('empty_dims_remover', VarianceThreshold()),
                                  ('scaler', StandardScaler()),
                                  ('model', model)]).set_params(**kwargs) 
開發者ID:oddt,項目名稱:oddt,代碼行數:15,代碼來源:regressors.py

示例12: remove_lv_features

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import VarianceThreshold [as 別名]
def remove_lv_features(model, X):
    r"""Remove low-variance features.

    Parameters
    ----------
    model : alphapy.Model
        Model specifications for removing features.
    X : numpy array
        The feature matrix.

    Returns
    -------
    X_reduced : numpy array
        The reduced feature matrix.

    References
    ----------
    You can find more information on low-variance feature selection here [LV]_.

    .. [LV] http://scikit-learn.org/stable/modules/feature_selection.html#variance-threshold

    """

    logger.info("Removing Low-Variance Features")

    # Extract model parameters

    lv_remove = model.specs['lv_remove']
    lv_threshold = model.specs['lv_threshold']
    predict_mode = model.specs['predict_mode']

    # Remove low-variance features

    if lv_remove:
        logger.info("Low-Variance Threshold  : %.2f", lv_threshold)
        logger.info("Original Feature Count  : %d", X.shape[1])
        if not predict_mode:
            selector = VarianceThreshold(threshold=lv_threshold)
            selector.fit(X)
            support = selector.get_support()
            model.feature_map['lv_support'] = support
        else:
            support = model.feature_map['lv_support']
        X_reduced = X[:, support]
        model.feature_names = list(itertools.compress(model.feature_names, support))
        logger.info("Reduced Feature Count   : %d", X_reduced.shape[1])
    else:
        X_reduced = X
        logger.info("Skipping Low-Variance Features")

    assert X_reduced.shape[1] == len(model.feature_names), "Mismatched Features and Names"
    return X_reduced 
開發者ID:ScottfreeLLC,項目名稱:AlphaPy,代碼行數:54,代碼來源:features.py


注:本文中的sklearn.feature_selection.VarianceThreshold方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。