當前位置: 首頁>>代碼示例>>Python>>正文


Python feature_selection.SelectFdr方法代碼示例

本文整理匯總了Python中sklearn.feature_selection.SelectFdr方法的典型用法代碼示例。如果您正苦於以下問題:Python feature_selection.SelectFdr方法的具體用法?Python feature_selection.SelectFdr怎麽用?Python feature_selection.SelectFdr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.feature_selection的用法示例。


在下文中一共展示了feature_selection.SelectFdr方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_objectmapper

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import SelectFdr [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.feature_selection.GenericUnivariateSelect,
                      fs.GenericUnivariateSelect)
        self.assertIs(df.feature_selection.SelectPercentile,
                      fs.SelectPercentile)
        self.assertIs(df.feature_selection.SelectKBest, fs.SelectKBest)
        self.assertIs(df.feature_selection.SelectFpr, fs.SelectFpr)
        self.assertIs(df.feature_selection.SelectFromModel,
                      fs.SelectFromModel)
        self.assertIs(df.feature_selection.SelectFdr, fs.SelectFdr)
        self.assertIs(df.feature_selection.SelectFwe, fs.SelectFwe)
        self.assertIs(df.feature_selection.RFE, fs.RFE)
        self.assertIs(df.feature_selection.RFECV, fs.RFECV)
        self.assertIs(df.feature_selection.VarianceThreshold,
                      fs.VarianceThreshold) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:18,代碼來源:test_feature_selection.py

示例2: featureFitting

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import SelectFdr [as 別名]
def featureFitting(filename, X, y, featureNames,optimalFlag, kbest=20, alpha=0.05, model=None):
    '''
    Gets the K-best features (filtered by FDR, then select best ranked by t-test, more advanced options can be implemented).
    Save the data/matrix with the resulting/kept features to a new output file, "REDUCED_Feat.csv"
    Returns new features matrix, FD scaler, and K-select scaler
    '''
    a=alpha
    FD = SelectFdr(alpha=a)
    X = FD.fit_transform(X,y)

    selectK = SelectKBest(k=kbest)
    selectK.fit(X,y)
    selectK_mask=selectK.get_support()
    K_featnames = featureNames[selectK_mask]
    print("K_featnames: %s" %(K_featnames))
    Reduced_df = pd.read_csv(filename, index_col=0)
    Reduced_df = Reduced_df[Reduced_df.columns[selectK_mask]]
    Reduced_df.to_csv('REDUCED_Feat.csv')
    return Reduced_df, FD, selectK 
開發者ID:ddofer,項目名稱:ProFET,代碼行數:21,代碼來源:Model_trainer.py


注:本文中的sklearn.feature_selection.SelectFdr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。