本文整理匯總了Python中utils.Timer.stop方法的典型用法代碼示例。如果您正苦於以下問題:Python Timer.stop方法的具體用法?Python Timer.stop怎麽用?Python Timer.stop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils.Timer
的用法示例。
在下文中一共展示了Timer.stop方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import stop [as 別名]
class QueryExecutor:
index = None
timer = None
def __init__(self, index):
self.index = index
def executeQueries(self, queryList):
self.timer = Timer()
self.timer.start()
queryMatchingList = []
executedTokens = 0
for query in queryList:
searchTokens = query.getSearchTokens()
excludedTokens = query.getExcludedTokens()
searchResult = QueryResult()
for token in searchTokens:
executedTokens += 1
tmpPostingsList = self.index.getDictionary().getPostingsList(token)
searchResult.addPostingList(token, tmpPostingsList)
excludedResult = QueryResult()
for token in excludedTokens:
tmpPostingsList = self.index.getDictionary().getPostingsList(token)
excludedResult.addPostingList(token, tmpPostingsList)
if(len(excludedResult.getItems()) > 0):
queryMatching = QueryResult.mergeWithExclusions(searchResult, excludedResult)
else:
queryMatching = searchResult
queryMatchingList.append(queryMatching)
queryMatching = QueryResult.mergeWithIntersection(queryMatchingList)
rankedResult = RankedResult()
for doc, queryResultItem in queryMatching.getItems().items():
rank = RankProvider.provideRank(queryResultItem, executedTokens)
rankedResultItem = RankedResultItem(doc, rank, queryResultItem)
rankedResult.addRankedResultItem(rankedResultItem)
self.timer.stop()
return rankedResult.getSortedResult()
def getTimer(self):
return self.timer
示例2: worker
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import stop [as 別名]
def worker(args):
label, method = args
# call the requested method
try:
logger.info('%s: call to DataBuilder.%s' % (label, method))
t = Timer()
data = getattr(databuilder, method)()
t.stop()
logger.info('%s: done [%.1fs]' % (label, t.elapsed))
return label, data, None
except:
import StringIO
import traceback
buffer = StringIO.StringIO()
traceback.print_exc(file = buffer)
return label, None, buffer.getvalue()
示例3: __init__
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import stop [as 別名]
class Index:
source = None
timer = None
dictionary = None
parserType = None
def __init__(self, source, parserType):
self.source = source
self.parserType = parserType
self.dictionary = Dictionary()
self.timer = Timer()
self.timer.start()
self.setup()
self.timer.stop()
def setup(self):
if self.source == IndexSource.new:
self.createNewIndex()
elif self.source == IndexSource.stored:
self.loadStoredIndex()
else:
raise ValueError("Invalid index source")
def createNewIndex(self):
docCoordinator = DocumentCoordinator("books")
documents = docCoordinator.loadDocuments()
parser = Parser(self.parserType)
for document in documents:
text = docCoordinator.getDocumentText(document)
tokens = parser.parseTokensFromText(text)
for position, token in enumerate(tokens):
postingList = self.dictionary.getPostingsList(token)
postingList.addPosting(document, position)
def loadStoredIndex(self):
storage = Storage()
self.dictionary = storage.loadIndex()
def storeIndex(self):
self.timer = Timer()
self.timer.start()
storage = Storage()
storage.saveIndex(self.dictionary)
self.timer.stop()
def getDictionary(self):
return self.dictionary
def getTimer(self):
return self.timer
def getParserType(self):
return self.parserType
示例4: Parser
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import stop [as 別名]
parser = Parser('data')
parser.readSessionFile('yoochoose-clicks-aa.dat')
#parser.readSessionFile('yoochoose-clicks-ab.dat')
#parser.readSessionFile('yoochoose-clicks-ac.dat')
#parser.readSessionFile('yoochoose-clicks-ad.dat')
#parser.readSessionFile('yoochoose-clicks-ae.dat')
#parser.readSessionFile('yoochoose-clicks-af.dat')
sessionRepository = parser.readBuyFile('yoochoose-buys.dat')
sessionRepository = parser.getSessionRepository()
itemRepository = parser.getItemRepository()
timer.stop()
print("Time for loading files: " + timer.getElapsedSecondsString())
#sessions = sessionRepository.getAllSessions()
#session = sessionRepository.getById(327676)
#print(session.getVector(items))
#for session in sessions:
# print(str(session.id) + ', ' + str(session.duration) + " sec, " + str(session.numberOfClicks) + " clicks, BUY: " + str(session.buy))
###############################################################
# Training
###############################################################
timer.start()
示例5: train
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import stop [as 別名]
def train(network, num_epochs, train_fn, train_batches, test_fn=None,
validation_batches=None, threads=None, early_stop=np.inf,
early_stop_acc=False, save_epoch_params=False, callbacks=None,
acc_func=onehot_acc, train_acc=False):
"""
Train a neural network by updating its parameters.
Parameters
----------
network : lasagne neural network handle
Network to be trained.
num_epochs: int
Maximum number of epochs to train
train_fn : theano function
Function that computes the loss and updates the network parameters.
Takes parameters from the batch iterators
train_batches : batch iterator
Iterator that yields mini batches from the training set. Must be able
to re-iterate multiple times.
test_fn : theano function
Function that computes loss and predictions of the network.
Takes parameters from the batch iterators.
validation_batches : batch iterator
Iterator that yields mini batches from the validation set. Must be able
to re-iterate multiple times.
threads : int
Number of threads to use to prepare mini batches. If None, use
a single thread.
early_stop : int
Number of iterations without loss improvement on validation set that
stops training.
early_stop_acc : boolean
Use validation accuracy instead of loss for early stopping.
save_epoch_params : str or False
Save neural network parameters after each epoch. If False, do not save.
If you want to save the parameters, provide a filename with an
int formatter so the epoch number can be inserted.
callbacks : list of callables
List of callables to call after each training epoch. Can be used to k
update learn rates or plot data. Functions have to accept the
following parameters: current epoch number, lists of per-epoch train
losses, train accuracies, validation losses, validation accuracies.
The last three lists may be empty, depending on other parameters.
acc_func : callable
Function to use to compute accuracies.
train_acc : boolean
Also compute accuracy for training set. In this case, the training
loss will be also re-computed after an epoch, which leads to lower
train losses than when not using this parameter.
Returns
-------
tuple of four lists
Train losses, trian accuracies, validation losses,
validation accuracies for each epoch
"""
if (test_fn is not None) != (validation_batches is not None):
raise ValueError('If test function is given, validation set is '
'necessary (and vice-versa)!')
best_val = np.inf if not early_stop_acc else 0.0
epochs_since_best_val_loss = 0
if callbacks is None:
callbacks = []
if callbacks is None:
callbacks = []
best_params = get_params(network)
train_losses = []
val_losses = []
val_accs = []
train_accs = []
if threads is not None:
def threaded(it):
return dmgr.iterators.threaded(it, threads)
else:
def threaded(it):
return it
for epoch in range(num_epochs):
timer = Timer()
timer.start('epoch')
timer.start('train')
try:
train_losses.append(
avg_batch_loss(threaded(train_batches), train_fn, timer))
except RuntimeError as e:
print(Colors.red('Error during training:'), file=sys.stderr)
print(Colors.red(str(e)), file=sys.stderr)
return best_params
timer.stop('train')
if save_epoch_params:
save_params(network, save_epoch_params.format(epoch))
#.........這裏部分代碼省略.........