本文整理匯總了Python中utils.Timer.start方法的典型用法代碼示例。如果您正苦於以下問題:Python Timer.start方法的具體用法?Python Timer.start怎麽用?Python Timer.start使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils.Timer
的用法示例。
在下文中一共展示了Timer.start方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import start [as 別名]
class QueryExecutor:
index = None
timer = None
def __init__(self, index):
self.index = index
def executeQueries(self, queryList):
self.timer = Timer()
self.timer.start()
queryMatchingList = []
executedTokens = 0
for query in queryList:
searchTokens = query.getSearchTokens()
excludedTokens = query.getExcludedTokens()
searchResult = QueryResult()
for token in searchTokens:
executedTokens += 1
tmpPostingsList = self.index.getDictionary().getPostingsList(token)
searchResult.addPostingList(token, tmpPostingsList)
excludedResult = QueryResult()
for token in excludedTokens:
tmpPostingsList = self.index.getDictionary().getPostingsList(token)
excludedResult.addPostingList(token, tmpPostingsList)
if(len(excludedResult.getItems()) > 0):
queryMatching = QueryResult.mergeWithExclusions(searchResult, excludedResult)
else:
queryMatching = searchResult
queryMatchingList.append(queryMatching)
queryMatching = QueryResult.mergeWithIntersection(queryMatchingList)
rankedResult = RankedResult()
for doc, queryResultItem in queryMatching.getItems().items():
rank = RankProvider.provideRank(queryResultItem, executedTokens)
rankedResultItem = RankedResultItem(doc, rank, queryResultItem)
rankedResult.addRankedResultItem(rankedResultItem)
self.timer.stop()
return rankedResult.getSortedResult()
def getTimer(self):
return self.timer
示例2: __init__
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import start [as 別名]
class Index:
source = None
timer = None
dictionary = None
parserType = None
def __init__(self, source, parserType):
self.source = source
self.parserType = parserType
self.dictionary = Dictionary()
self.timer = Timer()
self.timer.start()
self.setup()
self.timer.stop()
def setup(self):
if self.source == IndexSource.new:
self.createNewIndex()
elif self.source == IndexSource.stored:
self.loadStoredIndex()
else:
raise ValueError("Invalid index source")
def createNewIndex(self):
docCoordinator = DocumentCoordinator("books")
documents = docCoordinator.loadDocuments()
parser = Parser(self.parserType)
for document in documents:
text = docCoordinator.getDocumentText(document)
tokens = parser.parseTokensFromText(text)
for position, token in enumerate(tokens):
postingList = self.dictionary.getPostingsList(token)
postingList.addPosting(document, position)
def loadStoredIndex(self):
storage = Storage()
self.dictionary = storage.loadIndex()
def storeIndex(self):
self.timer = Timer()
self.timer.start()
storage = Storage()
storage.saveIndex(self.dictionary)
self.timer.stop()
def getDictionary(self):
return self.dictionary
def getTimer(self):
return self.timer
def getParserType(self):
return self.parserType
示例3: Timer
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import start [as 別名]
from parser import Parser
from session import Session
from sessionRepository import SessionRepository
from utils import Timer
from sklearn.neighbors import KNeighborsClassifier
from itemRepository import ItemRepository
timer = Timer()
###############################################################
# Loading files
###############################################################
timer.start()
parser = Parser('data')
parser.readSessionFile('yoochoose-clicks-aa.dat')
#parser.readSessionFile('yoochoose-clicks-ab.dat')
#parser.readSessionFile('yoochoose-clicks-ac.dat')
#parser.readSessionFile('yoochoose-clicks-ad.dat')
#parser.readSessionFile('yoochoose-clicks-ae.dat')
#parser.readSessionFile('yoochoose-clicks-af.dat')
sessionRepository = parser.readBuyFile('yoochoose-buys.dat')
sessionRepository = parser.getSessionRepository()
itemRepository = parser.getItemRepository()
timer.stop()
print("Time for loading files: " + timer.getElapsedSecondsString())
示例4: World
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import start [as 別名]
class World(object):
worlds = []
@staticmethod
def clear_all():
for world in World.worlds:
world.stop()
World.worlds = []
def __init__(self, cols, rows):
self.cols = cols
self.rows = rows
self._objects = []
self._field = []
self._timer = None
self.queue = []
self.reproductions = 0
self.plants = 0
self.herbivores = 0
self.predators = 0
self.turns = 0
self.deaths = 0
for x in xrange(cols):
self._field.append([ None for y in xrange(rows)])
World.worlds.append(self)
def check_queue(self):
newqueue = []
for turns, obj in self.queue:
if turns == 0:
self.add_creature(obj)
else:
newqueue.append((turns - 1, obj))
return newqueue
def loop(self):
try:
self.queue = self.check_queue()
for obj in self._objects:
obj.turn(self)
deleted = filter(lambda obj: obj.is_nothing, self._objects)
#todo: need lock
for obj in deleted:
logging.debug("Dead: %r, turns: %s, history: %s" % (obj, obj.turns, repr(obj.history.read())))
self._field[obj.x][obj.y] = None
self._objects.remove(obj)
self.info_update_del(obj)
self.deaths += 1
self.stabilize()
self.turns += 1
except:
import traceback
logging.debug(traceback.format_exc())
self._timer.cancel()
def start(self, speed):
if self._timer:
raise Exception()
self.init_count_objects = len(self._objects) + len(self.queue)
self._timer = Timer(speed, self.loop)
self._timer.start()
def stop(self):
self._timer.cancel()
def begin_force(self):
self._timer.is_force = True
def end_force(self):
self._timer.is_force = False
def check_position(self, x, y):
return 0 <= x < self.cols and 0 <= y < self.rows
def add_creature(self, creature):
if not self.check_position(creature.x, creature.y):
return False
if self._field[creature.x][creature.y] is not None:
return False
self._objects.append(creature)
self._field[creature.x][creature.y] = creature
self.info_update_add(creature)
return True
def info_update_add(self, creature):
name = creature.__class__.__name__
if name == 'Predator':
self.predators += 1
elif name == 'Herbivore':
self.herbivores += 1
elif name == 'Plant':
self.plants += 1
def info_update_del(self, creature):
name = creature.__class__.__name__
if name == 'Predator':
self.predators -= 1
#.........這裏部分代碼省略.........
示例5: train
# 需要導入模塊: from utils import Timer [as 別名]
# 或者: from utils.Timer import start [as 別名]
def train(network, num_epochs, train_fn, train_batches, test_fn=None,
validation_batches=None, threads=None, early_stop=np.inf,
early_stop_acc=False, save_epoch_params=False, callbacks=None,
acc_func=onehot_acc, train_acc=False):
"""
Train a neural network by updating its parameters.
Parameters
----------
network : lasagne neural network handle
Network to be trained.
num_epochs: int
Maximum number of epochs to train
train_fn : theano function
Function that computes the loss and updates the network parameters.
Takes parameters from the batch iterators
train_batches : batch iterator
Iterator that yields mini batches from the training set. Must be able
to re-iterate multiple times.
test_fn : theano function
Function that computes loss and predictions of the network.
Takes parameters from the batch iterators.
validation_batches : batch iterator
Iterator that yields mini batches from the validation set. Must be able
to re-iterate multiple times.
threads : int
Number of threads to use to prepare mini batches. If None, use
a single thread.
early_stop : int
Number of iterations without loss improvement on validation set that
stops training.
early_stop_acc : boolean
Use validation accuracy instead of loss for early stopping.
save_epoch_params : str or False
Save neural network parameters after each epoch. If False, do not save.
If you want to save the parameters, provide a filename with an
int formatter so the epoch number can be inserted.
callbacks : list of callables
List of callables to call after each training epoch. Can be used to k
update learn rates or plot data. Functions have to accept the
following parameters: current epoch number, lists of per-epoch train
losses, train accuracies, validation losses, validation accuracies.
The last three lists may be empty, depending on other parameters.
acc_func : callable
Function to use to compute accuracies.
train_acc : boolean
Also compute accuracy for training set. In this case, the training
loss will be also re-computed after an epoch, which leads to lower
train losses than when not using this parameter.
Returns
-------
tuple of four lists
Train losses, trian accuracies, validation losses,
validation accuracies for each epoch
"""
if (test_fn is not None) != (validation_batches is not None):
raise ValueError('If test function is given, validation set is '
'necessary (and vice-versa)!')
best_val = np.inf if not early_stop_acc else 0.0
epochs_since_best_val_loss = 0
if callbacks is None:
callbacks = []
if callbacks is None:
callbacks = []
best_params = get_params(network)
train_losses = []
val_losses = []
val_accs = []
train_accs = []
if threads is not None:
def threaded(it):
return dmgr.iterators.threaded(it, threads)
else:
def threaded(it):
return it
for epoch in range(num_epochs):
timer = Timer()
timer.start('epoch')
timer.start('train')
try:
train_losses.append(
avg_batch_loss(threaded(train_batches), train_fn, timer))
except RuntimeError as e:
print(Colors.red('Error during training:'), file=sys.stderr)
print(Colors.red(str(e)), file=sys.stderr)
return best_params
timer.stop('train')
if save_epoch_params:
save_params(network, save_epoch_params.format(epoch))
#.........這裏部分代碼省略.........