當前位置: 首頁>>代碼示例>>Python>>正文


Python AttributeDict.imagePath方法代碼示例

本文整理匯總了Python中utils.AttributeDict.imagePath方法的典型用法代碼示例。如果您正苦於以下問題:Python AttributeDict.imagePath方法的具體用法?Python AttributeDict.imagePath怎麽用?Python AttributeDict.imagePath使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.AttributeDict的用法示例。


在下文中一共展示了AttributeDict.imagePath方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: demo

# 需要導入模塊: from utils import AttributeDict [as 別名]
# 或者: from utils.AttributeDict import imagePath [as 別名]
def demo():

    # set the parameters

    # start with default parameters
    params = defaultParameters()    
    
    # Nordland spring dataset
    ds = AttributeDict()
    ds.name = 'spring'
    
    try:
        path = os.environ['DATASET_1_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/spring'
        print "Warning: Environment variable DATASET_1_PATH not found! Trying '"+path+"'"
    ds.imagePath = path
    
    ds.prefix='images-'
    ds.extension='.png'
    ds.suffix=''
    ds.imageSkip = 100     # use every n-nth image
    ds.imageIndices = range(1, 35700, ds.imageSkip)    
    ds.savePath = 'results'
    ds.saveFile = '%s-%d-%d-%d' % (ds.name, ds.imageIndices[0], ds.imageSkip, ds.imageIndices[-1])
    
    ds.preprocessing = AttributeDict()
    ds.preprocessing.save = 1
    ds.preprocessing.load = 0 #1
    #ds.crop=[1 1 60 32]  # x0 y0 x1 y1  cropping will be done AFTER resizing!
    ds.crop=[]
    
    spring=ds

    ds2 = deepcopy(ds)
    # Nordland winter dataset
    ds2.name = 'winter'
    #ds.imagePath = '../datasets/nordland/64x32-grayscale-1fps/winter'
    try:
        path = os.environ['DATASET_2_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/winter'
        print "Warning: Environment variable DATASET_2_PATH not found! Trying '"+path+"'"
    ds2.saveFile = '%s-%d-%d-%d' % (ds2.name, ds2.imageIndices[0], ds2.imageSkip, ds2.imageIndices[-1])
    # ds.crop=[5 1 64 32]
    ds2.crop=[]
    
    winter=ds2      

    params.dataset = [spring, winter]

    # load old results or re-calculate?
    params.differenceMatrix.load = 0
    params.contrastEnhanced.load = 0
    params.matching.load = 0
    
    # where to save / load the results
    params.savePath='results'
              
    ## now process the dataset
    ss = SeqSLAM(params)  
    t1=time.time()
    results = ss.run()
    t2=time.time()          
    print "time taken: "+str(t2-t1)
    
    ## show some results
    if len(results.matches) > 0:
        m = results.matches[:,0] # The LARGER the score, the WEAKER the match.
        thresh=0.9  # you can calculate a precision-recall plot by varying this threshold
        m[results.matches[:,1]>thresh] = np.nan # remove the weakest matches
        plt.plot(m,'.')      # ideally, this would only be the diagonal
        plt.title('Matchings')   
        plt.show()    
    else:
        print "Zero matches"          
開發者ID:breezeflutter,項目名稱:pySeqSLAM,代碼行數:78,代碼來源:demo.py


注:本文中的utils.AttributeDict.imagePath方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。