當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.AttributeDict類代碼示例

本文整理匯總了Python中utils.AttributeDict的典型用法代碼示例。如果您正苦於以下問題:Python AttributeDict類的具體用法?Python AttributeDict怎麽用?Python AttributeDict使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了AttributeDict類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: encoder

        def encoder(input_, path_name, input_noise_std=0, noise_std=[]):
            h = input_

            logger.info('  0: noise %g' % input_noise_std)
            if input_noise_std > 0.:
                h = h + self.noise_like(h) * input_noise_std

            d = AttributeDict()
            d.unlabeled = self.new_activation_dict()
            d.labeled = self.new_activation_dict()
            d.labeled.z[0] = self.labeled(h)
            d.unlabeled.z[0] = self.unlabeled(h)
            prev_dim = input_dim
            for i, (spec, _, act_f) in layers[1:]:
                d.labeled.h[i - 1], d.unlabeled.h[i - 1] = self.split_lu(h)
                noise = noise_std[i] if i < len(noise_std) else 0.
                curr_dim, z, m, s, h = self.f(h, prev_dim, spec, i, act_f,
                                              path_name=path_name,
                                              noise_std=noise)
                assert self.layer_dims.get(i) in (None, curr_dim)
                self.layer_dims[i] = curr_dim
                d.labeled.z[i], d.unlabeled.z[i] = self.split_lu(z)
                d.unlabeled.s[i] = s
                d.unlabeled.m[i] = m
                prev_dim = curr_dim
            d.labeled.h[i], d.unlabeled.h[i] = self.split_lu(h)
            return d
開發者ID:fulldecent,項目名稱:LRE,代碼行數:27,代碼來源:ladder.py

示例2: decoder

    def decoder(self, clean, corr):
        est = self.new_activation_dict()
        costs = AttributeDict()
        costs.denois = AttributeDict()
        for i, ((_, spec), act_f) in self.layers[::-1]:
            z_corr = corr.unlabeled.z[i]
            z_clean = clean.unlabeled.z[i]
            z_clean_s = clean.unlabeled.s.get(i)
            z_clean_m = clean.unlabeled.m.get(i)

            # It's the last layer
            if i == len(self.layers) - 1:
                fspec = (None, None)
                ver = corr.unlabeled.h[i]
                ver_dim = self.layer_dims[i]
                top_g = True
            else:
                fspec = self.layers[i + 1][1][0]
                ver = est.z.get(i + 1)
                ver_dim = self.layer_dims.get(i + 1)
                top_g = False

            z_est = self.g(z_lat=z_corr,
                           z_ver=ver,
                           in_dims=ver_dim,
                           out_dims=self.layer_dims[i],
                           num=i,
                           fspec=fspec,
                           top_g=top_g)

            # The first layer
            if z_clean_s:
                z_est_norm = (z_est - z_clean_m) / z_clean_s
            else:
                z_est_norm = z_est

            se = SquaredError('denois' + str(i))
            costs.denois[i] = se.apply(z_est_norm.flatten(2),
                                       z_clean.flatten(2)) \
                / np.prod(self.layer_dims[i], dtype=floatX)
            costs.denois[i].name = 'denois' + str(i)

            # Store references for later use
            est.z[i] = z_est
            est.h[i] = apply_act(z_est, act_f)
            est.s[i] = None
            est.m[i] = None
        return est, costs
開發者ID:codeaudit,項目名稱:ladder_network,代碼行數:48,代碼來源:ladder.py

示例3: decoder

    def decoder(self, clean, corr, batch_size):
        get_unlabeled = lambda x: x[batch_size:] if x is not None else x
        est = self.new_activation_dict()
        costs = AttributeDict()
        costs.denois = AttributeDict()
        for i, ((_, spec), act_f) in self.layers[::-1]:
            z_corr = get_unlabeled(corr.z[i])
            z_clean = get_unlabeled(clean.z[i])
            z_clean_s = get_unlabeled(clean.s.get(i))
            z_clean_m = get_unlabeled(clean.m.get(i))

            # It's the last layer
            if i == len(self.layers) - 1:
                fspec = (None, None)
                ver = get_unlabeled(corr.h[i])
                ver_dim = self.layer_dims[i]
                top_g = True
            else:
                fspec = self.layers[i + 1][1][0]
                ver = est.z.get(i + 1)
                ver_dim = self.layer_dims.get(i + 1)
                top_g = False

            z_est = self.g(
                z_lat=z_corr, z_ver=ver, in_dims=ver_dim, out_dims=self.layer_dims[i], num=i, fspec=fspec, top_g=top_g
            )

            # For semi-supervised version
            if z_clean_s:
                z_est_norm = (z_est - z_clean_m) / z_clean_s
            else:
                z_est_norm = z_est
            z_est_norm = z_est

            se = SquaredError("denois" + str(i))
            costs.denois[i] = se.apply(z_est_norm.flatten(2), z_clean.flatten(2)) / np.prod(
                self.layer_dims[i], dtype=floatX
            )
            costs.denois[i].name = "denois" + str(i)

            # Store references for later use
            est.z[i] = z_est
            est.h[i] = apply_act(z_est, act_f)
            est.s[i] = None
            est.m[i] = None
        return est, costs
開發者ID:mohammadpz,項目名稱:ladder_network,代碼行數:46,代碼來源:ladder.py

示例4: get_mnist_data_dict

def get_mnist_data_dict(unlabeled_samples, valid_set_size, test_set=False):
    train_set = MNIST(("train",))
    # Make sure the MNIST data is in right format
    train_set.data_sources = (
        (train_set.data_sources[0] / 255.).astype(numpy.float32),
        train_set.data_sources[1])

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    rng = numpy.random.RandomState(seed=1)
    rng.shuffle(all_ind)

    data = AttributeDict()

    # Choose the training set
    data.train = train_set
    data.train_ind = all_ind[:unlabeled_samples]

    # Then choose validation set from the remaining indices
    data.valid = train_set
    data.valid_ind = numpy.setdiff1d(all_ind, data.train_ind)[:valid_set_size]
    logger.info('Using %d examples for validation' % len(data.valid_ind))
    # Only touch test data if requested
    if test_set:
        data.test = MNIST(("test",))
        data.test_ind = numpy.arange(data.test.num_examples)

    return data
開發者ID:codeaudit,項目名稱:ladder_network,代碼行數:28,代碼來源:datasets.py

示例5: load_and_log_params

def load_and_log_params(cli_params):
    cli_params = AttributeDict(cli_params)
    if cli_params.get('load_from'):
        p = load_df(cli_params.load_from, 'params').to_dict()[0]
        p = AttributeDict(p)
        for key in cli_params.iterkeys():
            if key not in p:
                p[key] = None
        new_params = cli_params
        loaded = True
    else:
        p = cli_params
        new_params = {}
        loaded = False

        # Make dseed seed unless specified explicitly
        if p.get('dseed') is None and p.get('seed') is not None:
            p['dseed'] = p['seed']

    logger.info('== COMMAND LINE ==')
    logger.info(' '.join(sys.argv))

    logger.info('== PARAMETERS ==')
    for k, v in p.iteritems():
        if new_params.get(k) is not None:
            p[k] = new_params[k]
            replace_str = "<- " + str(new_params.get(k))
        else:
            replace_str = ""
        logger.info(" {:20}: {:<20} {}".format(k, v, replace_str))
    return p, loaded
開發者ID:lude-ma,項目名稱:ladder,代碼行數:31,代碼來源:run.py

示例6: setup_data

def setup_data(p, test_set=False):
    dataset_class, training_set_size = {"cifar10": (CIFAR10, 40000), "mnist": (MNIST, 50000)}[p.dataset]

    # Allow overriding the default from command line
    if p.get("unlabeled_samples") is not None:
        training_set_size = p.unlabeled_samples

    train_set = dataset_class("train")

    # Make sure the MNIST data is in right format
    if p.dataset == "mnist":
        d = train_set.data_sources[train_set.sources.index("features")]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), "Make sure data is in float format and in range 0 to 1"

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get("dseed"):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[: p.valid_set_size]
    logger.info("Using %d examples for validation" % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class("test")
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    in_dim = train_set.data_sources[train_set.sources.index("features")].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, "Need %d whitening dimensions, not %d" % (
            numpy.product(in_dim),
            p.whiten_zca,
        )
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index("features")]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info("Whitening using %d ZCA components" % p.whiten_zca)
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
開發者ID:MultiPath,項目名稱:ladder,代碼行數:59,代碼來源:run.py

示例7: setup_data

def setup_data(p, test_set=False):
    dataset_class, training_set_size = {
        'cifar10': (CIFAR10, 40000),
        'mnist': (MNIST, 50000),
        'reddit': (SubredditTopPhotosFeatures22, 20000)
    }[p.dataset]

    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None:
        training_set_size = p.unlabeled_samples

    train_set = dataset_class(("train",))

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class(("test",))
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, \
            'Need %d whitening dimensions, not %d' % (numpy.product(in_dim),
                                                      p.whiten_zca)
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index('features')]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info('Whitening using %d ZCA components' % p.whiten_zca)
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
開發者ID:youralien,項目名稱:ladder,代碼行數:57,代碼來源:run.py

示例8: _load_extends_settings

    def _load_extends_settings(self, section_name, store):
        """
        Loads all settings from other template(s) specified by a section's
        'extends' setting.

        This method walks a dependency tree of sections from bottom up. Each
        step is a group of settings for a section in the form of a dictionary.
        A 'master' dictionary is updated with the settings at each step. This
        causes the next group of settings to override the previous, and so on.
        The 'section_name' settings are at the top of the dependency tree.
        """
        section = store[section_name]
        extends = section.get('extends')
        if extends is None:
            return
        if DEBUG_CONFIG:
            log.debug('%s extends %s' % (section_name, extends))
        extensions = [section]
        while True:
            extends = section.get('extends', None)
            if not extends:
                break
            try:
                section = store[extends]
                if section in extensions:
                    exts = ', '.join([self._get_section_name(x['__name__'])
                                      for x in extensions])
                    raise exception.ConfigError(
                        "Cyclical dependency between sections %s. "
                        "Check your EXTENDS settings." % exts)
                extensions.insert(0, section)
            except KeyError:
                raise exception.ConfigError(
                    "%s can't extend non-existent section %s" %
                    (section_name, extends))
        transform = AttributeDict()
        for extension in extensions:
            transform.update(extension)
        store[section_name] = transform
開發者ID:fauziharoon,項目名稱:metapathways2,代碼行數:39,代碼來源:config.py

示例9: doPreprocessing

    def doPreprocessing(self):
        results = AttributeDict()
        results.dataset = []
        for i in range(len(self.params.dataset)):
            # shall we just load it?
            filename = '%s/preprocessing-%s%s.mat' % (self.params.dataset[i].savePath, self.params.dataset[i].saveFile, self.params.saveSuffix)
            if self.params.dataset[i].preprocessing.load and os.path.isfile(filename):         
                r = loadmat(filename)
                print('Loading file %s ...' % filename)
                results.dataset[i].preprocessing = r.results_preprocessing
            else:
                # or shall we actually calculate it?
                p = deepcopy(self.params)    
                p.dataset = self.params.dataset[i]
                d = AttributeDict()
                d.preprocessing = np.copy(SeqSLAM.preprocessing(p))
                results.dataset.append(d)
    
                if self.params.dataset[i].preprocessing.save:
                    results_preprocessing = results.dataset[i].preprocessing
                    savemat(filename, {'results_preprocessing': results_preprocessing})

        return results
開發者ID:breezeflutter,項目名稱:pySeqSLAM,代碼行數:23,代碼來源:seqslam.py

示例10: encoder

    def encoder(self, input_, path_name, input_noise_std, noise_std):
        h = input_
        h = h + (self.rstream.normal(size=h.shape).astype(floatX) *
                 input_noise_std)

        d = AttributeDict()
        d.unlabeled = self.new_activation_dict()
        d.labeled = self.new_activation_dict()
        d.labeled.z[0], d.unlabeled.z[0] = self.split_lu(h)
        prev_dim = self.input_dim
        for i, (spec, act_f) in self.layers[1:]:
            d.labeled.h[i - 1], d.unlabeled.h[i - 1] = self.split_lu(h)
            noise = noise_std[i] if i < len(noise_std) else 0.
            curr_dim, z, m, s, h = self.f(h, prev_dim, spec, i, act_f,
                                          path_name=path_name,
                                          noise_std=noise)
            self.layer_dims[i] = curr_dim
            d.labeled.z[i], d.unlabeled.z[i] = self.split_lu(z)
            d.unlabeled.s[i] = s
            d.unlabeled.m[i] = m
            prev_dim = curr_dim
        d.labeled.h[i], d.unlabeled.h[i] = self.split_lu(h)

        return d
開發者ID:codeaudit,項目名稱:ladder_network,代碼行數:24,代碼來源:ladder.py

示例11: setup_data

def setup_data(p, test_set=False):
    dataset_class, training_set_size = {
        'cifar10': (CIFAR10, 40000),
        'mnist': (MNIST, 50000),
    }[p.dataset]

    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None:
        training_set_size = p.unlabeled_samples

    train_set = dataset_class("train")

    # Make sure the MNIST data is in right format
    if p.dataset == 'mnist':
        d = train_set.data_sources[train_set.sources.index('features')]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), \
            'Make sure data is in float format and in range 0 to 1'

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class("test")
        d.test_ind = numpy.arange(d.test.num_examples)

    in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index('features')]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    return in_dim, d
開發者ID:msevrens,項目名稱:ladder-1,代碼行數:49,代碼來源:run.py

示例12: AttributeDict

import sys
from utils import AttributeDict
from tagger_exp import TaggerExperiment

p = AttributeDict()

p.encoder_proj = (3000, 2000, 1000)
p.input_noise = 0.2
p.class_cost_x = 0.
p.zhat_init_value = 0.5

p.n_iterations = 3
p.n_groups = 4
p.lr = 0.001
p.labeled_samples = 1000
p.save_freq = 50
p.seed = 1
p.num_epochs = 150
p.batch_size = 100
p.valid_batch_size = 100
p.objects_per_sample = 2

p.dataset = 'freq20-2mnist'
p.input_type = 'continuous'

if __name__ == '__main__':
    if len(sys.argv) == 2 and sys.argv[1] == '--pretrain':
        p.save_to = 'freq20-2mnist-pretraining'
        experiment = TaggerExperiment(p)
        experiment.train()
    elif len(sys.argv) == 3 and sys.argv[1] == '--continue':
開發者ID:CuriousAI,項目名稱:tagger,代碼行數:31,代碼來源:runner-freq20-2mnist.py

示例13: AttributeDict

from utils import AttributeDict
from tagger_exp import TaggerExperiment

p = AttributeDict()

p.encoder_proj = (2000, 1000, 500)
p.input_noise = 0.2
p.class_cost_x = 0
p.zhat_init_value = 0.26  # mean of the input data.

p.n_iterations = 3
p.n_groups = 4
p.lr = 0.0004
p.seed = 10
p.num_epochs = 100
p.batch_size = 100
p.valid_batch_size = 100

p.dataset = 'shapes50k20x20'
p.input_type = 'binary'

p.save_to = 'shapes50k20x20'

if __name__ == '__main__':
    experiment = TaggerExperiment(p)
    experiment.train()
開發者ID:CuriousAI,項目名稱:tagger,代碼行數:26,代碼來源:runner-shapes50k20x20.py

示例14: demo

def demo():

    # set the parameters

    # start with default parameters
    params = defaultParameters()    
    
    # Nordland spring dataset
    ds = AttributeDict()
    ds.name = 'spring'
    
    try:
        path = os.environ['DATASET_1_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/spring'
        print "Warning: Environment variable DATASET_1_PATH not found! Trying '"+path+"'"
    ds.imagePath = path
    
    ds.prefix='images-'
    ds.extension='.png'
    ds.suffix=''
    ds.imageSkip = 100     # use every n-nth image
    ds.imageIndices = range(1, 35700, ds.imageSkip)    
    ds.savePath = 'results'
    ds.saveFile = '%s-%d-%d-%d' % (ds.name, ds.imageIndices[0], ds.imageSkip, ds.imageIndices[-1])
    
    ds.preprocessing = AttributeDict()
    ds.preprocessing.save = 1
    ds.preprocessing.load = 0 #1
    #ds.crop=[1 1 60 32]  # x0 y0 x1 y1  cropping will be done AFTER resizing!
    ds.crop=[]
    
    spring=ds

    ds2 = deepcopy(ds)
    # Nordland winter dataset
    ds2.name = 'winter'
    #ds.imagePath = '../datasets/nordland/64x32-grayscale-1fps/winter'
    try:
        path = os.environ['DATASET_2_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/winter'
        print "Warning: Environment variable DATASET_2_PATH not found! Trying '"+path+"'"
    ds2.saveFile = '%s-%d-%d-%d' % (ds2.name, ds2.imageIndices[0], ds2.imageSkip, ds2.imageIndices[-1])
    # ds.crop=[5 1 64 32]
    ds2.crop=[]
    
    winter=ds2      

    params.dataset = [spring, winter]

    # load old results or re-calculate?
    params.differenceMatrix.load = 0
    params.contrastEnhanced.load = 0
    params.matching.load = 0
    
    # where to save / load the results
    params.savePath='results'
              
    ## now process the dataset
    ss = SeqSLAM(params)  
    t1=time.time()
    results = ss.run()
    t2=time.time()          
    print "time taken: "+str(t2-t1)
    
    ## show some results
    if len(results.matches) > 0:
        m = results.matches[:,0] # The LARGER the score, the WEAKER the match.
        thresh=0.9  # you can calculate a precision-recall plot by varying this threshold
        m[results.matches[:,1]>thresh] = np.nan # remove the weakest matches
        plt.plot(m,'.')      # ideally, this would only be the diagonal
        plt.title('Matchings')   
        plt.show()    
    else:
        print "Zero matches"          
開發者ID:breezeflutter,項目名稱:pySeqSLAM,代碼行數:76,代碼來源:demo.py

示例15: setup_data

def setup_data(p, test_set=False):
    if p.dataset in ['cifar10','mnist']:
        dataset_class, training_set_size = {
            'cifar10': (CIFAR10, 40000),
            'mnist': (MNIST, 50000),
        }[p.dataset]
    else:
        from fuel.datasets import H5PYDataset
        from fuel.utils import find_in_data_path
        from functools import partial
        fn=p.dataset
        fn=os.path.join(fn, fn + '.hdf5')
        def dataset_class(which_sets):
            return H5PYDataset(file_or_path=find_in_data_path(fn),
                               which_sets=which_sets,
                               load_in_memory=True)
        training_set_size = None

    train_set = dataset_class(["train"])

    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None and p.unlabeled_samples >= 0:
        training_set_size = p.unlabeled_samples
    elif training_set_size is None:
        training_set_size = train_set.num_examples

    # Make sure the MNIST data is in right format
    if p.dataset == 'mnist':
        d = train_set.data_sources[train_set.sources.index('features')]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), \
            'Make sure data is in float format and in range 0 to 1'

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class(["test"])
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, \
            'Need %d whitening dimensions, not %d' % (numpy.product(in_dim),
                                                      p.whiten_zca)
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index('features')]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info('Whitening using %d ZCA components' % p.whiten_zca)
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
開發者ID:fulldecent,項目名稱:LRE,代碼行數:76,代碼來源:run.py


注:本文中的utils.AttributeDict類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。