本文整理匯總了Python中tracker.PlanarTracker.saveLog方法的典型用法代碼示例。如果您正苦於以下問題:Python PlanarTracker.saveLog方法的具體用法?Python PlanarTracker.saveLog怎麽用?Python PlanarTracker.saveLog使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tracker.PlanarTracker
的用法示例。
在下文中一共展示了PlanarTracker.saveLog方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Navigation
# 需要導入模塊: from tracker import PlanarTracker [as 別名]
# 或者: from tracker.PlanarTracker import saveLog [as 別名]
class Navigation(object):
def __init__(self):
self.gap = .6
# self.space = .9
self.target_x = .5
self.target_y = 1
self.agent_id = 0
self.connection = LabNavigation()
self.path_planner = GapFinder(self.gap)
self.actuation = ROS2DimActuate()
self.actuation.setAngularVelocityLimit(1)
self.tracker = PlanarTracker(self.actuation.actuate, self.connection.getStates)
self.tracker.setID(self.agent_id)
self.distance = []
self.prev_closest_reading = 0.0
self.prev_time = time()
self.crash_avert_velocity = 0.0
print 'Starting the Navigation'
sleep(7)
self.subscriber = rospy.Subscriber('/scan', LaserScan, self.move, queue_size=1)
rospy.spin()
def move(self, data):
agent_id, x, y, z, yaw, pitch, roll = self.connection.getStates(self.agent_id)
# sleep(1)
print '-----------------------------'
global i
global stage
global finished_logging
distances = list(data.ranges)[0::every_other]
self.path_planner.filterReadings(distances, angles)
closest_reading, closest_reading_angle = self.path_planner.getMinimumReading()
closest_reading = min(closest_reading, 2 * self.gap)
time_now = time()
self.crash_avert_velocity = (self.crash_avert_velocity + (closest_reading - self.prev_closest_reading) * kd / (time() - self.prev_time)) / 2
self.crash_avert_velocity = min(0.0, self.crash_avert_velocity)
# print 'Crash avert velocity:% 4.2f'%self.crash_avert_velocity
controlled_velocity = (closest_reading) * kp + self.crash_avert_velocity
controlled_velocity = max(0.0, min(controlled_velocity, 1.0))
# print 'Controlled Velocity:', controlled_velocity,
# print 'closest_reading:',closest_reading,
# print 'Crash avert velocity:',self.crash_avert_velocity
self.actuation.setTangentialVelocityLimit(min(1, controlled_velocity))
i += 1
if i % temp_var is 0 and i < temp_var_2:
log[i / temp_var] = [x, y, yaw, self.path_planner.readings_polar]
diff_x = self.target_x - x
diff_y = self.target_y - y
self.distance = sqrt(diff_x**2 + diff_y**2)
# print 'distance',self.distance
if self.distance < .1:
stage += 1
print 'ARRIVED!!!!!!!!!!'
if finished_logging is False and i >= temp_var_2:
self.tracker.saveLog()
save('/home/administrator/barzin_catkin_ws/src/path_tracking/scripts/experimental_results/env', log)
finished_logging = True
if stage % 2 is 0:
self.target_y = self.target_y * -1
else:
self.target_x = self.target_x * -1
# exit()
angle = arctan2(diff_y, diff_x) - yaw
subgoal_distance, subgoal_angle = self.path_planner.planPath(self.distance, -angle)
subgoal_angle2 = -subgoal_angle
# print angle,subgoal_angle2
# faz = 1
# var = min(max(0,self.gap*(1+faz)-closest_reading),faz)
# offset = var*pi/faz/4
# subgoal_angle2 = subgoal_angle2+offset*sign(subgoal_angle2-(-closest_reading_angle))
# print '% 4.2f, % 4.2f, % 4.2f' % (var, offset,offset*sign(subgoal_angle2-(-closest_reading_angle)))
# print self.distance,-angle,subgoal_distance,subgoal_angle2
self.tracker.moveTowardsDynamicPoint(subgoal_distance, subgoal_angle2)
# print 'target angle:',yaw+subgoal_angle2
self.prev_closest_reading = closest_reading
self.prev_time = time_now
示例2: Navigation
# 需要導入模塊: from tracker import PlanarTracker [as 別名]
# 或者: from tracker.PlanarTracker import saveLog [as 別名]
class Navigation(object):
def __init__(self):
#set parameters
self.gap = .7 #space needed to pass through
self.target_x = 5 #destination coordinates
self.target_y = 4
self.agent_id = 0
self.connection = gpsLocalization() #Connection which will give current position
self.path_planner = GapFinder(self.gap) #Finds gaps that the robot can enter
self.actuation = ROS2DimActuate() #Controls the motion of the robot
self.actuation.setAngularVelocityLimit(.5) #Sets the maximum velocity
#Create a tracker which knows how to move the robot and get it's position
self.tracker = PlanarTracker(self.actuation.actuate, self.connection.getStates)
#Tell the tracker which robot to command
self.tracker.setID(self.agent_id)
self.distance = []
self.prev_closest_reading = 0.0
self.prev_time = time()
self.crash_avert_velocity = 0.0
print 'Starting the Navigation'
sleep(2)
self.subscriber = rospy.Subscriber('/husky1/scan', LaserScan, self.move, queue_size=1) #Call move for each laser scan
rospy.spin()
def move(self, data):
agent_id, x, y, z, yaw, pitch, roll = self.connection.getStates(self.agent_id) #Get localization info
#print 'x: ', x,'y: ', y,'theta: ', yaw
print '-----------------------------'
global i
global stage
global finished_logging
distances = list(data.ranges)[0::every_other] #store the range readings from the lidar
self.path_planner.filterReadings(distances, angles) #filter the results
closest_reading, closest_reading_angle = self.path_planner.getMinimumReading()
closest_reading = min(closest_reading, 2 * self.gap)
time_now = time()
self.crash_avert_velocity = (self.crash_avert_velocity + (closest_reading - self.prev_closest_reading) * kd / (time() - self.prev_time)) / 2
self.crash_avert_velocity = min(0.0, self.crash_avert_velocity)
controlled_velocity = (closest_reading) * kp + self.crash_avert_velocity
controlled_velocity = max(0.0, min(controlled_velocity, 1.0))
self.actuation.setTangentialVelocityLimit(min(.2, controlled_velocity))
i += 1
if i % temp_var is 0 and i < temp_var_2:
log[i / temp_var] = [x, y, yaw, self.path_planner.readings_polar]
diff_x = self.target_x - x
diff_y = self.target_y - y
self.distance = sqrt(diff_x**2 + diff_y**2)
if self.distance < .1:
stage += 1
print 'ARRIVED!!!!!!!!!!'
if finished_logging is False and i >= temp_var_2:
self.tracker.saveLog()
save('loginfo', log)
finished_logging = True
self.target_y = self.target_y * -1
self.target_x = self.target_x * -1
exit()
angle = arctan2(diff_y, diff_x) - yaw
#print 'dist: ', self.distance, 'angle: ', -angle
subgoal_distance, subgoal_angle = self.path_planner.planPath(self.distance, -angle)
subgoal_angle2 = -subgoal_angle
self.tracker.moveTowardsDynamicPoint(subgoal_distance, subgoal_angle2)
self.prev_closest_reading = closest_reading
self.prev_time = time_now
示例3: Navigation
# 需要導入模塊: from tracker import PlanarTracker [as 別名]
# 或者: from tracker.PlanarTracker import saveLog [as 別名]
#.........這裏部分代碼省略.........
print '-----------------------------'
global i
global finished_edge
# extract distance data and analyze them
distances = list(data.ranges)[0::every_other]
if self.substage == 0:
self.path_planner.filterReadings(distances, angles)
closest_reading, closest_reading_angle = self.path_planner.getMinimumReading()
# dynamic obstacle collision avoidance
closest_reading = min(closest_reading, 2 * self.gap)
time_now = time()
self.crash_avert_velocity = (self.crash_avert_velocity + (closest_reading - self.prev_closest_reading) * kd / (time() - self.prev_time)) / 2
self.crash_avert_velocity = min(0.0, self.crash_avert_velocity)
# set velocity based on dynamic obstacle movement
controlled_velocity = (closest_reading) * kp + self.crash_avert_velocity
controlled_velocity = max(0.0, min(controlled_velocity, 1.0))
self.actuation.setTangentialVelocityLimit(min(1, controlled_velocity))
# find destination and analyze it
target_object = self.connection.getStates(targets[self.stage][0])
target = withDistance(target_object[1], target_object[2], target_object[4], targets[self.stage][1][0])
# print target
target_x = target[0]
target_y = target[1]
diff_x = target_x - x
diff_y = target_y - y
self.distance = sqrt(diff_x**2 + diff_y**2)
print 'here1'
# plan path to the target
angle = arctan2(diff_y, diff_x) - yaw # find direction towards target in robots coordinate frame
subgoal_distance, subgoal_angle = self.path_planner.planPath(self.distance, -angle)
subgoal_angle2 = -subgoal_angle
# go to the point designated by path planner
self.tracker.moveTowardsDynamicPoint(subgoal_distance, subgoal_angle2)
# See if reached the destination
if self.distance < .1:
print '\033[92m' + '\033[1m' + 'ARRIVED TO GATE' + '\033[0m'
# face direction
if targets[self.stage][1][0] < 0:
desired_facing = self.connection.getStates(targets[self.stage][0])[4]
else:
desired_facing = pi + self.connection.getStates(targets[self.stage][0])[4]
self.tracker.faceDirection(desired_facing)
self.substage = 1
sleep(1)
# save some of the variable needed for next iteration
self.prev_closest_reading = closest_reading
self.prev_time = time_now
elif self.substage == 1:
# print self.path_planner.getFrontTravel(), distances[len(distances) / 2]+self.path_planner.lidar_offset - self.gap
front_travel = self.path_planner.getFrontTravel(distances, angles)
front_error = front_travel - targets[self.stage][1][1]
print front_travel, front_error
if abs(front_error) < .03:
self.substage = 2
print 'BREAKINGGGGGGGGGGGGGGGGGGGG'
sleep(5)
# break
self.actuation.actuate(.5 * front_error, 0)
elif self.substage == 2:
front_travel = self.path_planner.getFrontTravel(distances, angles)
front_error = front_travel - targets[self.stage][1][1] - .2
print front_travel, front_error
if abs(front_error) < .03:
self.stage += 1
self.substage = 0
print 'BREAKINGGGGGGGGGGGGGGGGGGGG'
# break
self.actuation.actuate(.5 * front_error, 0)
else:
print 'stupid fuck'
# log everything
# i += 1
# if i % temp_var is 0 and i < temp_var_2:
# if self.substage==0:
# log[i / temp_var] = [x, y, yaw, self.path_planner.readings_polar]
# else:
# log[i / temp_var] = [x, y, yaw, []]
if self.stage == len(targets):
self.tracker.saveLog()
save('/home/administrator/barzin_catkin_ws/src/path_tracking/scripts/experimental_results/planner_of_agent_' + str(self.agent_id), log)
self.subscriber.unregister()
print '\033[92m' + '\033[1m' + 'AND DONE' + '\033[0m'
elif self.stage > len(targets): # just do nothing after that
print "Stupid shit didn't unregister"
sleep(100)