當前位置: 首頁>>代碼示例>>Python>>正文


Python PlanarTracker.faceDirection方法代碼示例

本文整理匯總了Python中tracker.PlanarTracker.faceDirection方法的典型用法代碼示例。如果您正苦於以下問題:Python PlanarTracker.faceDirection方法的具體用法?Python PlanarTracker.faceDirection怎麽用?Python PlanarTracker.faceDirection使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tracker.PlanarTracker的用法示例。


在下文中一共展示了PlanarTracker.faceDirection方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Navigation

# 需要導入模塊: from tracker import PlanarTracker [as 別名]
# 或者: from tracker.PlanarTracker import faceDirection [as 別名]
class Navigation(object):

    def __init__(self):
        sleep(5)
        self.distance = []
        self.connection = NaslabNetwork()
        self.path_planner = GapFinder(.5)
        self.actuation = ROS2DimActuate()
        self.tracker = PlanarTracker(self.actuation.actuate, self.connection.getStates)
        self.tracker.setID(0)
        self.target_body_number = 2
        self.space = .75
        self.direction = 1
        self.subscriber = rospy.Subscriber('/scan', LaserScan, self.move, queue_size=1)
        rospy.spin()

    # def start(self):

    def move(self, data):
        distances = list(data.ranges)[0::every_other]
        self.path_planner.filterReadings(distances, angles)

        x, y, theta = self.connection.getStates(0)
        target_x, target_y, target_theta = self.connection.getStates(self.target_body_number)
        target_x = target_x + self.space * cos(target_theta)
        target_y = target_y + self.space * sin(target_theta)
        diff_x = target_x - x
        diff_y = target_y - y
        self.distance = sqrt(diff_x**2 + diff_y**2)

        if self.distance < .03:

            if self.target_body_number == 1:
                self.tracker.faceDirection(target_theta)
                print 'ARRIVED!!!!!!!!!!!'
                self.subscriber.unregister()
                return

            if self.target_body_number == 2:
                self.tracker.faceDirection(pi+target_theta)
                self.target_body_number = 1
                self.space = -1.1
                print 'ARRIVED!!!!!!!!!!!'
                sleep(4)

        angle = arctan2(diff_y, diff_x) - theta
        subgoal_distance, subgoal_angle = self.path_planner.planPath(self.distance, -angle)
        self.tracker.moveTowardsDynamicPoint(subgoal_distance, -subgoal_angle)
開發者ID:NASLab,項目名稱:GroundROS,代碼行數:50,代碼來源:avoid_obstacles.py

示例2: Navigation

# 需要導入模塊: from tracker import PlanarTracker [as 別名]
# 或者: from tracker.PlanarTracker import faceDirection [as 別名]

#.........這裏部分代碼省略.........
            #target_object = self.connection.getStates(targets[self.stage][0])
            if self.stage == 0:
                target_object = [0,-5,0,0,0]

            # Find where to approach target from
            target = withDistance(target_object[1], target_object[2], target_object[4], targets[self.stage][1][0])
            print target
            
            target_x = target[0]
            target_y = target[1]
            diff_x = target_x - x
            diff_y = target_y - y
            self.distance = sqrt(diff_x**2 + diff_y**2)

            # plan path to the target
            angle = arctan2(diff_y, diff_x) - yaw  # find direction towards target in robots coordinate frame
            subgoal_distance, subgoal_angle = self.path_planner.planPath(self.distance, -angle)
            subgoal_angle2 = -subgoal_angle

            # go to the point designated by path planner
            self.tracker.moveTowardsDynamicPoint(subgoal_distance, subgoal_angle2)

            # See if reached the destination
            if self.distance < .1:
                print '\033[92m' + '\033[1m' + 'ARRIVED TO GATE' + '\033[0m'

                # face direction
                if targets[self.stage][1][0] < 0:
                    desired_facing = 0
                    #desired_facing = self.connection.getStates(targets[self.stage][0])[4]
                else:
                    desired_facing = pi
                    #desired_facing = pi + self.connection.getStates(targets[self.stage][0])[4]
                self.tracker.faceDirection(desired_facing)
                self.substage = 1
                sleep(1)

            # save some of the variable needed for next iteration
            self.prev_closest_reading = closest_reading
            self.prev_time = time_now

            #Plot the results

            # xpol, ypol = self.path_planner.polarToCartesian()

            # nums = len(self.path_planner.possible_travel)
            # reading_x = [0] * nums
            # reading_y = [0] * nums
            # subgoal_x = []
            # subgoal_y = []
            # for i in range(len(self.path_planner.possible_travel)):
            #     reading_x[i] = x + self.path_planner.readings_polar[i][0] * cos(yaw - self.path_planner.readings_polar[i][1])
            #     reading_y[i] = y + self.path_planner.readings_polar[i][0] * sin(yaw - self.path_planner.readings_polar[i][1])
            #     xpol[i] = x + self.path_planner.possible_travel[i] * cos(-self.path_planner.readings_polar[i][1] + yaw)
            #     ypol[i] = y + self.path_planner.possible_travel[i] * sin(-self.path_planner.readings_polar[i][1] + yaw)
            #     if i in self.path_planner.subgoals:

            #         subgoal_x = subgoal_x + [xpol[i]]
            #         subgoal_y = subgoal_y + [ypol[i]]
            # if self.flag:
            #     self.f0 = plt.figure(1,figsize=(9,9))
            #     self.ax0 = self.f0.add_subplot(111)

            #     self.sgc, = self.ax0.plot(subgoal_x, subgoal_y, 'ko', markersize=20, label='Subgoal Candidate')
            #     self.bsg, = self.ax0.plot(x + subgoal_distance * cos(yaw - subgoal_angle),
            #              y + subgoal_distance * sin(yaw - subgoal_angle), 'go', markersize=20, label='Best Subgoal')
開發者ID:ntbeyers,項目名稱:husky_devel,代碼行數:70,代碼來源:ssrr_agent1_mid.py

示例3: Navigation

# 需要導入模塊: from tracker import PlanarTracker [as 別名]
# 或者: from tracker.PlanarTracker import faceDirection [as 別名]
class Navigation(object):

    def __init__(self):

        self.gap = .7
        self.agent_id = 1
        self.stage = 0
        self.substage = 0

        self.connection = LabNavigation()
        self.path_planner = GapFinder(self.gap)
        self.actuation = ROS2DimActuate()
        self.tracker = PlanarTracker(self.actuation.actuate, self.connection.getStates)

        self.tracker.setID(self.agent_id)

        sleep_time = 7
        while sleep_time > 0:
            print "Mission starts in:", sleep_time
            sleep_time -= 1
            sleep(1)
        self.distance = []
        self.prev_closest_reading = 0.0
        self.prev_time = time()
        self.crash_avert_velocity = 0.0

        print 'Starting the Navigation'
        self.subscriber = rospy.Subscriber('/scan', LaserScan, self.move, queue_size=1)

        rospy.spin()

    def move(self, data):
        agent_id, x, y, z, yaw, pitch, roll = self.connection.getStates(self.agent_id)
        print '-----------------------------'
        global i
        global finished_edge

        # extract distance data and analyze them
        distances = list(data.ranges)[0::every_other]

        if self.substage == 0:
            self.path_planner.filterReadings(distances, angles)
            closest_reading, closest_reading_angle = self.path_planner.getMinimumReading()

            # dynamic obstacle collision avoidance
            closest_reading = min(closest_reading, 2 * self.gap)
            time_now = time()
            self.crash_avert_velocity = (self.crash_avert_velocity + (closest_reading - self.prev_closest_reading) * kd / (time() - self.prev_time)) / 2
            self.crash_avert_velocity = min(0.0, self.crash_avert_velocity)

            # set velocity based on dynamic obstacle movement
            controlled_velocity = (closest_reading) * kp + self.crash_avert_velocity
            controlled_velocity = max(0.0, min(controlled_velocity, 1.0))
            self.actuation.setTangentialVelocityLimit(min(1, controlled_velocity))

            # find destination and analyze it
            target_object = self.connection.getStates(targets[self.stage][0])
            target = withDistance(target_object[1], target_object[2], target_object[4], targets[self.stage][1][0])
            # print target
            target_x = target[0]
            target_y = target[1]
            diff_x = target_x - x
            diff_y = target_y - y
            self.distance = sqrt(diff_x**2 + diff_y**2)

            print 'here1'
            # plan path to the target
            angle = arctan2(diff_y, diff_x) - yaw  # find direction towards target in robots coordinate frame
            subgoal_distance, subgoal_angle = self.path_planner.planPath(self.distance, -angle)
            subgoal_angle2 = -subgoal_angle

            # go to the point designated by path planner
            self.tracker.moveTowardsDynamicPoint(subgoal_distance, subgoal_angle2)

            # See if reached the destination
            if self.distance < .1:
                print '\033[92m' + '\033[1m' + 'ARRIVED TO GATE' + '\033[0m'

                # face direction
                if targets[self.stage][1][0] < 0:
                    desired_facing = self.connection.getStates(targets[self.stage][0])[4]
                else:
                    desired_facing = pi + self.connection.getStates(targets[self.stage][0])[4]
                self.tracker.faceDirection(desired_facing)
                self.substage = 1
                sleep(1)

            # save some of the variable needed for next iteration
            self.prev_closest_reading = closest_reading
            self.prev_time = time_now

        elif self.substage == 1:
            
            front_travel = self.path_planner.getFrontTravel(distances, angles)
            front_error = front_travel - targets[self.stage][1][1]
            print front_travel, front_error
            if abs(front_error) < .03:
                self.substage = 2
                print 'BREAKINGGGGGGGGGGGGGGGGGGGG'
                sleep(5)
#.........這裏部分代碼省略.........
開發者ID:ntbeyers,項目名稱:husky_devel,代碼行數:103,代碼來源:microgrid_agent2.py

示例4: NaslabNetwork

# 需要導入模塊: from tracker import PlanarTracker [as 別名]
# 或者: from tracker.PlanarTracker import faceDirection [as 別名]
#!/usr/bin/env python

from tracker import PlanarTracker
from communication import NaslabNetwork
from actuate import ROS2DimActuate
from numpy import pi
from path_generator import PathGenerator


connection = NaslabNetwork()
act = ROS2DimActuate()
tracker = PlanarTracker(act.actuate, connection.getStates)

for i in range(10):
    tracker.goToPoint(1, 0)
    tracker.faceDirection(pi/2)
    path = PathGenerator(path_type='circle', speed=.3)
    tracker.followPath(path)
開發者ID:NASLab,項目名稱:GroundROS,代碼行數:20,代碼來源:follow_line.py


注:本文中的tracker.PlanarTracker.faceDirection方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。