當前位置: 首頁>>代碼示例>>Python>>正文


Python LongTensor.view方法代碼示例

本文整理匯總了Python中torch.LongTensor.view方法的典型用法代碼示例。如果您正苦於以下問題:Python LongTensor.view方法的具體用法?Python LongTensor.view怎麽用?Python LongTensor.view使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.LongTensor的用法示例。


在下文中一共展示了LongTensor.view方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: flattened_index_select

# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import view [as 別名]
def flattened_index_select(target: torch.Tensor,
                           indices: torch.LongTensor) -> torch.Tensor:
    """
    The given ``indices`` of size ``(set_size, subset_size)`` specifies subsets of the ``target``
    that each of the set_size rows should select. The `target` has size
    ``(batch_size, sequence_length, embedding_size)``, and the resulting selected tensor has size
    ``(batch_size, set_size, subset_size, embedding_size)``.

    Parameters
    ----------
    target : ``torch.Tensor``, required.
        A Tensor of shape (batch_size, sequence_length, embedding_size).
    indices : ``torch.LongTensor``, required.
        A LongTensor of shape (set_size, subset_size). All indices must be < sequence_length
        as this tensor is an index into the sequence_length dimension of the target.

    Returns
    -------
    selected : ``torch.Tensor``, required.
        A Tensor of shape (batch_size, set_size, subset_size, embedding_size).
    """
    if indices.dim() != 2:
        raise ConfigurationError("Indices passed to flattened_index_select had shape {} but "
                                 "only 2 dimensional inputs are supported.".format(indices.size()))
    # Shape: (batch_size, set_size * subset_size, embedding_size)
    flattened_selected = target.index_select(1, indices.view(-1))

    # Shape: (batch_size, set_size, subset_size, embedding_size)
    selected = flattened_selected.view(target.size(0), indices.size(0), indices.size(1), -1)
    return selected
開發者ID:pyknife,項目名稱:allennlp,代碼行數:32,代碼來源:util.py

示例2: sequence_cross_entropy_with_logits

# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import view [as 別名]
def sequence_cross_entropy_with_logits(logits: torch.FloatTensor,
                                       targets: torch.LongTensor,
                                       weights: torch.FloatTensor,
                                       batch_average: bool = True) -> torch.FloatTensor:
    """
    Computes the cross entropy loss of a sequence, weighted with respect to
    some user provided weights. Note that the weighting here is not the same as
    in the :func:`torch.nn.CrossEntropyLoss()` criterion, which is weighting
    classes; here we are weighting the loss contribution from particular elements
    in the sequence. This allows loss computations for models which use padding.

    Parameters
    ----------
    logits : ``torch.FloatTensor``, required.
        A ``torch.FloatTensor`` of size (batch_size, sequence_length, num_classes)
        which contains the unnormalized probability for each class.
    targets : ``torch.LongTensor``, required.
        A ``torch.LongTensor`` of size (batch, sequence_length) which contains the
        index of the true class for each corresponding step.
    weights : ``torch.FloatTensor``, required.
        A ``torch.FloatTensor`` of size (batch, sequence_length)
    batch_average : bool, optional, (default = True).
        A bool indicating whether the loss should be averaged across the batch,
        or returned as a vector of losses per batch element.

    Returns
    -------
    A torch.FloatTensor representing the cross entropy loss.
    If ``batch_average == True``, the returned loss is a scalar.
    If ``batch_average == False``, the returned loss is a vector of shape (batch_size,).

    """
    # shape : (batch * sequence_length, num_classes)
    logits_flat = logits.view(-1, logits.size(-1))
    # shape : (batch * sequence_length, num_classes)
    log_probs_flat = torch.nn.functional.log_softmax(logits_flat)
    # shape : (batch * max_len, 1)
    targets_flat = targets.view(-1, 1).long()

    # Contribution to the negative log likelihood only comes from the exact indices
    # of the targets, as the target distributions are one-hot. Here we use torch.gather
    # to extract the indices of the num_classes dimension which contribute to the loss.
    # shape : (batch * sequence_length, 1)
    negative_log_likelihood_flat = - torch.gather(log_probs_flat, dim=1, index=targets_flat)
    # shape : (batch, sequence_length)
    negative_log_likelihood = negative_log_likelihood_flat.view(*targets.size())
    # shape : (batch, sequence_length)
    negative_log_likelihood = negative_log_likelihood * weights.float()
    # shape : (batch_size,)
    per_batch_loss = negative_log_likelihood.sum(1) / (weights.sum(1).float() + 1e-13)

    if batch_average:
        num_non_empty_sequences = ((weights.sum(1) > 0).float().sum() + 1e-13)
        return per_batch_loss.sum() / num_non_empty_sequences
    return per_batch_loss
開發者ID:cyzhangAThit,項目名稱:GLUE-baselines,代碼行數:57,代碼來源:util.py

示例3: sequence_cross_entropy_with_logits

# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import view [as 別名]
def sequence_cross_entropy_with_logits(logits: torch.FloatTensor,
                                       targets: torch.LongTensor,
                                       weights: torch.FloatTensor,
                                       batch_average: bool = True,
                                       label_smoothing: float = None) -> torch.FloatTensor:
    """
    Computes the cross entropy loss of a sequence, weighted with respect to
    some user provided weights. Note that the weighting here is not the same as
    in the :func:`torch.nn.CrossEntropyLoss()` criterion, which is weighting
    classes; here we are weighting the loss contribution from particular elements
    in the sequence. This allows loss computations for models which use padding.

    Parameters
    ----------
    logits : ``torch.FloatTensor``, required.
        A ``torch.FloatTensor`` of size (batch_size, sequence_length, num_classes)
        which contains the unnormalized probability for each class.
    targets : ``torch.LongTensor``, required.
        A ``torch.LongTensor`` of size (batch, sequence_length) which contains the
        index of the true class for each corresponding step.
    weights : ``torch.FloatTensor``, required.
        A ``torch.FloatTensor`` of size (batch, sequence_length)
    batch_average : bool, optional, (default = True).
        A bool indicating whether the loss should be averaged across the batch,
        or returned as a vector of losses per batch element.
    label_smoothing : ``float``, optional (default = None)
        Whether or not to apply label smoothing to the cross-entropy loss.
        For example, with a label smoothing value of 0.2, a 4 class classifcation
        target would look like ``[0.05, 0.05, 0.85, 0.05]`` if the 3rd class was
        the correct label.

    Returns
    -------
    A torch.FloatTensor representing the cross entropy loss.
    If ``batch_average == True``, the returned loss is a scalar.
    If ``batch_average == False``, the returned loss is a vector of shape (batch_size,).

    """
    # shape : (batch * sequence_length, num_classes)
    logits_flat = logits.view(-1, logits.size(-1))
    # shape : (batch * sequence_length, num_classes)
    log_probs_flat = torch.nn.functional.log_softmax(logits_flat, dim=-1)
    # shape : (batch * max_len, 1)
    targets_flat = targets.view(-1, 1).long()

    if label_smoothing is not None and label_smoothing > 0.0:
        num_classes = logits.size(-1)
        smoothing_value = label_smoothing / num_classes
        # Fill all the correct indices with 1 - smoothing value.
        one_hot_targets = torch.zeros_like(log_probs_flat).scatter_(-1, targets_flat, 1.0 - label_smoothing)
        smoothed_targets = one_hot_targets + smoothing_value
        negative_log_likelihood_flat = - log_probs_flat * smoothed_targets
        negative_log_likelihood_flat = negative_log_likelihood_flat.sum(-1, keepdim=True)
    else:
        # Contribution to the negative log likelihood only comes from the exact indices
        # of the targets, as the target distributions are one-hot. Here we use torch.gather
        # to extract the indices of the num_classes dimension which contribute to the loss.
        # shape : (batch * sequence_length, 1)
        negative_log_likelihood_flat = - torch.gather(log_probs_flat, dim=1, index=targets_flat)
    # shape : (batch, sequence_length)
    negative_log_likelihood = negative_log_likelihood_flat.view(*targets.size())
    # shape : (batch, sequence_length)
    negative_log_likelihood = negative_log_likelihood * weights.float()
    # shape : (batch_size,)
    per_batch_loss = negative_log_likelihood.sum(1) / (weights.sum(1).float() + 1e-13)

    if batch_average:
        num_non_empty_sequences = ((weights.sum(1) > 0).float().sum() + 1e-13)
        return per_batch_loss.sum() / num_non_empty_sequences
    return per_batch_loss
開發者ID:pyknife,項目名稱:allennlp,代碼行數:72,代碼來源:util.py


注:本文中的torch.LongTensor.view方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。