本文整理匯總了Python中torch.LongTensor.size方法的典型用法代碼示例。如果您正苦於以下問題:Python LongTensor.size方法的具體用法?Python LongTensor.size怎麽用?Python LongTensor.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.LongTensor
的用法示例。
在下文中一共展示了LongTensor.size方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: flattened_index_select
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def flattened_index_select(target: torch.Tensor,
indices: torch.LongTensor) -> torch.Tensor:
"""
The given ``indices`` of size ``(set_size, subset_size)`` specifies subsets of the ``target``
that each of the set_size rows should select. The `target` has size
``(batch_size, sequence_length, embedding_size)``, and the resulting selected tensor has size
``(batch_size, set_size, subset_size, embedding_size)``.
Parameters
----------
target : ``torch.Tensor``, required.
A Tensor of shape (batch_size, sequence_length, embedding_size).
indices : ``torch.LongTensor``, required.
A LongTensor of shape (set_size, subset_size). All indices must be < sequence_length
as this tensor is an index into the sequence_length dimension of the target.
Returns
-------
selected : ``torch.Tensor``, required.
A Tensor of shape (batch_size, set_size, subset_size, embedding_size).
"""
if indices.dim() != 2:
raise ConfigurationError("Indices passed to flattened_index_select had shape {} but "
"only 2 dimensional inputs are supported.".format(indices.size()))
# Shape: (batch_size, set_size * subset_size, embedding_size)
flattened_selected = target.index_select(1, indices.view(-1))
# Shape: (batch_size, set_size, subset_size, embedding_size)
selected = flattened_selected.view(target.size(0), indices.size(0), indices.size(1), -1)
return selected
示例2: __call__
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def __call__(self, # type: ignore
predictions: torch.LongTensor,
gold_targets: torch.LongTensor) -> None:
"""
Update precision counts.
Parameters
----------
predictions : ``torch.LongTensor``, required
Batched predicted tokens of shape `(batch_size, max_sequence_length)`.
references : ``torch.LongTensor``, required
Batched reference (gold) translations with shape `(batch_size, max_gold_sequence_length)`.
Returns
-------
None
"""
predictions, gold_targets = self.unwrap_to_tensors(predictions, gold_targets)
for ngram_size, _ in enumerate(self._ngram_weights, start=1):
precision_matches, precision_totals = self._get_modified_precision_counts(
predictions, gold_targets, ngram_size)
self._precision_matches[ngram_size] += precision_matches
self._precision_totals[ngram_size] += precision_totals
if not self._exclude_indices:
self._prediction_lengths += predictions.size(0) * predictions.size(1)
self._reference_lengths += gold_targets.size(0) * gold_targets.size(1)
else:
valid_predictions_mask = self._get_valid_tokens_mask(predictions)
self._prediction_lengths += valid_predictions_mask.sum().item()
valid_gold_targets_mask = self._get_valid_tokens_mask(gold_targets)
self._reference_lengths += valid_gold_targets_mask.sum().item()
示例3: _get_modified_precision_counts
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def _get_modified_precision_counts(self,
predicted_tokens: torch.LongTensor,
reference_tokens: torch.LongTensor,
ngram_size: int) -> Tuple[int, int]:
"""
Compare the predicted tokens to the reference (gold) tokens at the desired
ngram size and calculate the numerator and denominator for a modified
form of precision.
The numerator is the number of ngrams in the predicted sentences that match
with an ngram in the corresponding reference sentence, clipped by the total
count of that ngram in the reference sentence. The denominator is just
the total count of predicted ngrams.
"""
clipped_matches = 0
total_predicted = 0
for batch_num in range(predicted_tokens.size(0)):
predicted_row = predicted_tokens[batch_num, :]
reference_row = reference_tokens[batch_num, :]
predicted_ngram_counts = self._ngrams(predicted_row, ngram_size)
reference_ngram_counts = self._ngrams(reference_row, ngram_size)
for ngram, count in predicted_ngram_counts.items():
clipped_matches += min(count, reference_ngram_counts[ngram])
total_predicted += count
return clipped_matches, total_predicted
示例4: forward
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def forward(self, # pylint: disable=arguments-differ
inputs: torch.Tensor,
mask: torch.LongTensor) -> torch.Tensor:
"""
Parameters
----------
inputs : ``torch.Tensor``, required.
A Tensor of shape ``(batch_size, sequence_length, hidden_size)``.
mask : ``torch.LongTensor``, required.
A binary mask of shape ``(batch_size, sequence_length)`` representing the
non-padded elements in each sequence in the batch.
Returns
-------
A ``torch.Tensor`` of shape (num_layers, batch_size, sequence_length, hidden_size),
where the num_layers dimension represents the LSTM output from that layer.
"""
batch_size, total_sequence_length = mask.size()
stacked_sequence_output, final_states, restoration_indices = \
self.sort_and_run_forward(self._lstm_forward, inputs, mask)
num_layers, num_valid, returned_timesteps, encoder_dim = stacked_sequence_output.size()
# Add back invalid rows which were removed in the call to sort_and_run_forward.
if num_valid < batch_size:
zeros = stacked_sequence_output.data.new(num_layers,
batch_size - num_valid,
returned_timesteps,
encoder_dim).fill_(0)
zeros = Variable(zeros)
stacked_sequence_output = torch.cat([stacked_sequence_output, zeros], 1)
# The states also need to have invalid rows added back.
new_states = []
for state in final_states:
state_dim = state.size(-1)
zeros = state.data.new(num_layers, batch_size - num_valid, state_dim).fill_(0)
zeros = Variable(zeros)
new_states.append(torch.cat([state, zeros], 1))
final_states = new_states
# It's possible to need to pass sequences which are padded to longer than the
# max length of the sequence to a Seq2StackEncoder. However, packing and unpacking
# the sequences mean that the returned tensor won't include these dimensions, because
# the RNN did not need to process them. We add them back on in the form of zeros here.
sequence_length_difference = total_sequence_length - returned_timesteps
if sequence_length_difference > 0:
zeros = stacked_sequence_output.data.new(num_layers,
batch_size,
sequence_length_difference,
stacked_sequence_output[0].size(-1)).fill_(0)
zeros = Variable(zeros)
stacked_sequence_output = torch.cat([stacked_sequence_output, zeros], 2)
self._update_states(final_states, restoration_indices)
# Restore the original indices and return the sequence.
# Has shape (num_layers, batch_size, sequence_length, hidden_size)
return stacked_sequence_output.index_select(1, restoration_indices)
示例5: _action_history_match
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def _action_history_match(predicted: List[int], targets: torch.LongTensor) -> int:
# TODO(mattg): this could probably be moved into a FullSequenceMatch metric, or something.
# Check if target is big enough to cover prediction (including start/end symbols)
if len(predicted) > targets.size(1):
return 0
predicted_tensor = targets.new_tensor(predicted)
targets_trimmed = targets[:, :len(predicted)]
# Return 1 if the predicted sequence is anywhere in the list of targets.
return torch.max(torch.min(targets_trimmed.eq(predicted_tensor), dim=1)[0]).item()
示例6: sequence_cross_entropy_with_logits
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def sequence_cross_entropy_with_logits(logits: torch.FloatTensor,
targets: torch.LongTensor,
weights: torch.FloatTensor,
batch_average: bool = True) -> torch.FloatTensor:
"""
Computes the cross entropy loss of a sequence, weighted with respect to
some user provided weights. Note that the weighting here is not the same as
in the :func:`torch.nn.CrossEntropyLoss()` criterion, which is weighting
classes; here we are weighting the loss contribution from particular elements
in the sequence. This allows loss computations for models which use padding.
Parameters
----------
logits : ``torch.FloatTensor``, required.
A ``torch.FloatTensor`` of size (batch_size, sequence_length, num_classes)
which contains the unnormalized probability for each class.
targets : ``torch.LongTensor``, required.
A ``torch.LongTensor`` of size (batch, sequence_length) which contains the
index of the true class for each corresponding step.
weights : ``torch.FloatTensor``, required.
A ``torch.FloatTensor`` of size (batch, sequence_length)
batch_average : bool, optional, (default = True).
A bool indicating whether the loss should be averaged across the batch,
or returned as a vector of losses per batch element.
Returns
-------
A torch.FloatTensor representing the cross entropy loss.
If ``batch_average == True``, the returned loss is a scalar.
If ``batch_average == False``, the returned loss is a vector of shape (batch_size,).
"""
# shape : (batch * sequence_length, num_classes)
logits_flat = logits.view(-1, logits.size(-1))
# shape : (batch * sequence_length, num_classes)
log_probs_flat = torch.nn.functional.log_softmax(logits_flat)
# shape : (batch * max_len, 1)
targets_flat = targets.view(-1, 1).long()
# Contribution to the negative log likelihood only comes from the exact indices
# of the targets, as the target distributions are one-hot. Here we use torch.gather
# to extract the indices of the num_classes dimension which contribute to the loss.
# shape : (batch * sequence_length, 1)
negative_log_likelihood_flat = - torch.gather(log_probs_flat, dim=1, index=targets_flat)
# shape : (batch, sequence_length)
negative_log_likelihood = negative_log_likelihood_flat.view(*targets.size())
# shape : (batch, sequence_length)
negative_log_likelihood = negative_log_likelihood * weights.float()
# shape : (batch_size,)
per_batch_loss = negative_log_likelihood.sum(1) / (weights.sum(1).float() + 1e-13)
if batch_average:
num_non_empty_sequences = ((weights.sum(1) > 0).float().sum() + 1e-13)
return per_batch_loss.sum() / num_non_empty_sequences
return per_batch_loss
示例7: batched_index_select
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def batched_index_select(target: torch.Tensor,
indices: torch.LongTensor,
flattened_indices: Optional[torch.LongTensor] = None) -> torch.Tensor:
"""
The given ``indices`` of size ``(batch_size, d_1, ..., d_n)`` indexes into the sequence
dimension (dimension 2) of the target, which has size ``(batch_size, sequence_length,
embedding_size)``.
This function returns selected values in the target with respect to the provided indices, which
have size ``(batch_size, d_1, ..., d_n, embedding_size)``. This can use the optionally
precomputed :func:`~flattened_indices` with size ``(batch_size * d_1 * ... * d_n)`` if given.
An example use case of this function is looking up the start and end indices of spans in a
sequence tensor. This is used in the
:class:`~allennlp.models.coreference_resolution.CoreferenceResolver`. Model to select
contextual word representations corresponding to the start and end indices of mentions. The key
reason this can't be done with basic torch functions is that we want to be able to use look-up
tensors with an arbitrary number of dimensions (for example, in the coref model, we don't know
a-priori how many spans we are looking up).
Parameters
----------
target : ``torch.Tensor``, required.
A 3 dimensional tensor of shape (batch_size, sequence_length, embedding_size).
This is the tensor to be indexed.
indices : ``torch.LongTensor``
A tensor of shape (batch_size, ...), where each element is an index into the
``sequence_length`` dimension of the ``target`` tensor.
flattened_indices : Optional[torch.Tensor], optional (default = None)
An optional tensor representing the result of calling :func:~`flatten_and_batch_shift_indices`
on ``indices``. This is helpful in the case that the indices can be flattened once and
cached for many batch lookups.
Returns
-------
selected_targets : ``torch.Tensor``
A tensor with shape [indices.size(), target.size(-1)] representing the embedded indices
extracted from the batch flattened target tensor.
"""
if flattened_indices is None:
# Shape: (batch_size * d_1 * ... * d_n)
flattened_indices = flatten_and_batch_shift_indices(indices, target.size(1))
# Shape: (batch_size * sequence_length, embedding_size)
flattened_target = target.view(-1, target.size(-1))
# Shape: (batch_size * d_1 * ... * d_n, embedding_size)
flattened_selected = flattened_target.index_select(0, flattened_indices)
selected_shape = list(indices.size()) + [target.size(-1)]
# Shape: (batch_size, d_1, ..., d_n, embedding_size)
selected_targets = flattened_selected.view(*selected_shape)
return selected_targets
示例8: forward
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def forward(self,
input_ids: torch.LongTensor,
offsets: torch.LongTensor = None,
token_type_ids: torch.LongTensor = None) -> torch.Tensor:
"""
Parameters
----------
input_ids : ``torch.LongTensor``
The (batch_size, max_sequence_length) tensor of wordpiece ids.
offsets : ``torch.LongTensor``, optional
The BERT embeddings are one per wordpiece. However it's possible/likely
you might want one per original token. In that case, ``offsets``
represents the indices of the desired wordpiece for each original token.
Depending on how your token indexer is configured, this could be the
position of the last wordpiece for each token, or it could be the position
of the first wordpiece for each token.
For example, if you had the sentence "Definitely not", and if the corresponding
wordpieces were ["Def", "##in", "##ite", "##ly", "not"], then the input_ids
would be 5 wordpiece ids, and the "last wordpiece" offsets would be [3, 4].
If offsets are provided, the returned tensor will contain only the wordpiece
embeddings at those positions, and (in particular) will contain one embedding
per token. If offsets are not provided, the entire tensor of wordpiece embeddings
will be returned.
token_type_ids : ``torch.LongTensor``, optional
If an input consists of two sentences (as in the BERT paper),
tokens from the first sentence should have type 0 and tokens from
the second sentence should have type 1. If you don't provide this
(the default BertIndexer doesn't) then it's assumed to be all 0s.
"""
# pylint: disable=arguments-differ
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
input_mask = (input_ids != 0).long()
all_encoder_layers, _ = self.bert_model(input_ids, input_mask, token_type_ids)
if self._scalar_mix is not None:
mix = self._scalar_mix(all_encoder_layers, input_mask)
else:
mix = all_encoder_layers[-1]
if offsets is None:
return mix
else:
batch_size = input_ids.size(0)
range_vector = util.get_range_vector(batch_size,
device=util.get_device_of(mix)).unsqueeze(1)
return mix[range_vector, offsets]
示例9: _ngrams
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def _ngrams(self,
tensor: torch.LongTensor,
ngram_size: int) -> Dict[Tuple[int, ...], int]:
ngram_counts: Dict[Tuple[int, ...], int] = Counter()
if ngram_size > tensor.size(-1):
return ngram_counts
for start_position in range(ngram_size):
for tensor_slice in tensor[start_position:].split(ngram_size, dim=-1):
if tensor_slice.size(-1) < ngram_size:
break
ngram = tuple(x.item() for x in tensor_slice)
if any(x in self._exclude_indices for x in ngram):
continue
ngram_counts[ngram] += 1
return ngram_counts
示例10: greedy_predict
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def greedy_predict(self,
final_encoder_output: torch.LongTensor,
target_embedder: Embedding,
decoder_cell: GRUCell,
output_projection_layer: Linear) -> torch.Tensor:
"""
Greedily produces a sequence using the provided ``decoder_cell``.
Returns the predicted sequence.
Parameters
----------
final_encoder_output : ``torch.LongTensor``, required
Vector produced by ``self._encoder``.
target_embedder : ``Embedding``, required
Used to embed the target tokens.
decoder_cell: ``GRUCell``, required
The recurrent cell used at each time step.
output_projection_layer: ``Linear``, required
Linear layer mapping to the desired number of classes.
"""
num_decoding_steps = self._max_decoding_steps
decoder_hidden = final_encoder_output
batch_size = final_encoder_output.size()[0]
predictions = [final_encoder_output.new_full(
(batch_size,), fill_value=self._start_index, dtype=torch.long
)]
for _ in range(num_decoding_steps):
input_choices = predictions[-1]
decoder_input = target_embedder(input_choices)
decoder_hidden = decoder_cell(decoder_input, decoder_hidden)
# (batch_size, num_classes)
output_projections = output_projection_layer(decoder_hidden)
class_probabilities = F.softmax(output_projections, dim=-1)
_, predicted_classes = torch.max(class_probabilities, 1)
predictions.append(predicted_classes)
all_predictions = torch.cat([ps.unsqueeze(1) for ps in predictions], 1)
# Drop start symbol and return.
return all_predictions[:, 1:]
示例11: _get_valid_tokens_mask
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def _get_valid_tokens_mask(self, tensor: torch.LongTensor) -> torch.ByteTensor:
valid_tokens_mask = torch.ones(tensor.size(), dtype=torch.uint8)
for index in self._exclude_indices:
valid_tokens_mask = valid_tokens_mask & (tensor != index)
return valid_tokens_mask
示例12: sequence_cross_entropy_with_logits
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def sequence_cross_entropy_with_logits(logits: torch.FloatTensor,
targets: torch.LongTensor,
weights: torch.FloatTensor,
batch_average: bool = True,
label_smoothing: float = None) -> torch.FloatTensor:
"""
Computes the cross entropy loss of a sequence, weighted with respect to
some user provided weights. Note that the weighting here is not the same as
in the :func:`torch.nn.CrossEntropyLoss()` criterion, which is weighting
classes; here we are weighting the loss contribution from particular elements
in the sequence. This allows loss computations for models which use padding.
Parameters
----------
logits : ``torch.FloatTensor``, required.
A ``torch.FloatTensor`` of size (batch_size, sequence_length, num_classes)
which contains the unnormalized probability for each class.
targets : ``torch.LongTensor``, required.
A ``torch.LongTensor`` of size (batch, sequence_length) which contains the
index of the true class for each corresponding step.
weights : ``torch.FloatTensor``, required.
A ``torch.FloatTensor`` of size (batch, sequence_length)
batch_average : bool, optional, (default = True).
A bool indicating whether the loss should be averaged across the batch,
or returned as a vector of losses per batch element.
label_smoothing : ``float``, optional (default = None)
Whether or not to apply label smoothing to the cross-entropy loss.
For example, with a label smoothing value of 0.2, a 4 class classifcation
target would look like ``[0.05, 0.05, 0.85, 0.05]`` if the 3rd class was
the correct label.
Returns
-------
A torch.FloatTensor representing the cross entropy loss.
If ``batch_average == True``, the returned loss is a scalar.
If ``batch_average == False``, the returned loss is a vector of shape (batch_size,).
"""
# shape : (batch * sequence_length, num_classes)
logits_flat = logits.view(-1, logits.size(-1))
# shape : (batch * sequence_length, num_classes)
log_probs_flat = torch.nn.functional.log_softmax(logits_flat, dim=-1)
# shape : (batch * max_len, 1)
targets_flat = targets.view(-1, 1).long()
if label_smoothing is not None and label_smoothing > 0.0:
num_classes = logits.size(-1)
smoothing_value = label_smoothing / num_classes
# Fill all the correct indices with 1 - smoothing value.
one_hot_targets = torch.zeros_like(log_probs_flat).scatter_(-1, targets_flat, 1.0 - label_smoothing)
smoothed_targets = one_hot_targets + smoothing_value
negative_log_likelihood_flat = - log_probs_flat * smoothed_targets
negative_log_likelihood_flat = negative_log_likelihood_flat.sum(-1, keepdim=True)
else:
# Contribution to the negative log likelihood only comes from the exact indices
# of the targets, as the target distributions are one-hot. Here we use torch.gather
# to extract the indices of the num_classes dimension which contribute to the loss.
# shape : (batch * sequence_length, 1)
negative_log_likelihood_flat = - torch.gather(log_probs_flat, dim=1, index=targets_flat)
# shape : (batch, sequence_length)
negative_log_likelihood = negative_log_likelihood_flat.view(*targets.size())
# shape : (batch, sequence_length)
negative_log_likelihood = negative_log_likelihood * weights.float()
# shape : (batch_size,)
per_batch_loss = negative_log_likelihood.sum(1) / (weights.sum(1).float() + 1e-13)
if batch_average:
num_non_empty_sequences = ((weights.sum(1) > 0).float().sum() + 1e-13)
return per_batch_loss.sum() / num_non_empty_sequences
return per_batch_loss
示例13: forward
# 需要導入模塊: from torch import LongTensor [as 別名]
# 或者: from torch.LongTensor import size [as 別名]
def forward(self,
input_ids: torch.LongTensor,
offsets: torch.LongTensor = None,
token_type_ids: torch.LongTensor = None) -> torch.Tensor:
"""
Parameters
----------
input_ids : ``torch.LongTensor``
The (batch_size, ..., max_sequence_length) tensor of wordpiece ids.
offsets : ``torch.LongTensor``, optional
The BERT embeddings are one per wordpiece. However it's possible/likely
you might want one per original token. In that case, ``offsets``
represents the indices of the desired wordpiece for each original token.
Depending on how your token indexer is configured, this could be the
position of the last wordpiece for each token, or it could be the position
of the first wordpiece for each token.
For example, if you had the sentence "Definitely not", and if the corresponding
wordpieces were ["Def", "##in", "##ite", "##ly", "not"], then the input_ids
would be 5 wordpiece ids, and the "last wordpiece" offsets would be [3, 4].
If offsets are provided, the returned tensor will contain only the wordpiece
embeddings at those positions, and (in particular) will contain one embedding
per token. If offsets are not provided, the entire tensor of wordpiece embeddings
will be returned.
token_type_ids : ``torch.LongTensor``, optional
If an input consists of two sentences (as in the BERT paper),
tokens from the first sentence should have type 0 and tokens from
the second sentence should have type 1. If you don't provide this
(the default BertIndexer doesn't) then it's assumed to be all 0s.
"""
# pylint: disable=arguments-differ
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
input_mask = (input_ids != 0).long()
# input_ids may have extra dimensions, so we reshape down to 2-d
# before calling the BERT model and then reshape back at the end.
all_encoder_layers, _ = self.bert_model(input_ids=util.combine_initial_dims(input_ids),
token_type_ids=util.combine_initial_dims(token_type_ids),
attention_mask=util.combine_initial_dims(input_mask))
if self._scalar_mix is not None:
mix = self._scalar_mix(all_encoder_layers, input_mask)
else:
mix = all_encoder_layers[-1]
# At this point, mix is (batch_size * d1 * ... * dn, sequence_length, embedding_dim)
if offsets is None:
# Resize to (batch_size, d1, ..., dn, sequence_length, embedding_dim)
return util.uncombine_initial_dims(mix, input_ids.size())
else:
# offsets is (batch_size, d1, ..., dn, orig_sequence_length)
offsets2d = util.combine_initial_dims(offsets)
# now offsets is (batch_size * d1 * ... * dn, orig_sequence_length)
range_vector = util.get_range_vector(offsets2d.size(0),
device=util.get_device_of(mix)).unsqueeze(1)
# selected embeddings is also (batch_size * d1 * ... * dn, orig_sequence_length)
selected_embeddings = mix[range_vector, offsets2d]
return util.uncombine_initial_dims(selected_embeddings, offsets.size())