當前位置: 首頁>>代碼示例>>Python>>正文


Python ThunderContext.start方法代碼示例

本文整理匯總了Python中thunder.ThunderContext.start方法的典型用法代碼示例。如果您正苦於以下問題:Python ThunderContext.start方法的具體用法?Python ThunderContext.start怎麽用?Python ThunderContext.start使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在thunder.ThunderContext的用法示例。


在下文中一共展示了ThunderContext.start方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: open

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
stimulus_pulse = 1
if stimulus_pulse == 1:
    stimulus_on_time = [10,28,47,65,83,101]
    stimulus_off_time = [14,32,51,69,87,105]
    color_mat = ['#00FFFF','#0000A0','#800080','#FF00FF', '#800000','#A52A2A']


# Go into the main function that does pca for indiviudal trials
from pca_thunder_analysis import run_analysis_individualodors
from pca_thunder_analysis import run_analysis_eachodor
from pca_thunder_analysis import run_analysis_allodor

from thunder import ThunderContext

print 'Starting Thunder Now. Check console for details'
tsc = ThunderContext.start(appName="thunderpca")

if files_to_do_PCA[0]== 1:
    run_analysis_individualodors(Exp_Folder, filename_save_prefix_forPCA, filename_save_prefix_for_textfile, pca_components_ind, num_pca_colors_ind, num_samples_ind, thresh_pca_ind, color_map_ind,\
    tsc,redo_pca,reconstruct_pca, stimulus_on_time, stimulus_off_time,color_mat,required_pcs,time_baseline )
if files_to_do_PCA[1]== 1:
    run_analysis_eachodor(Exp_Folder, filename_save_prefix_forPCA, filename_save_prefix_for_textfile, pca_components_eachodor, num_pca_colors_eachodor, num_samples_eachodor, thresh_pca_eachodor, color_map_eachodor,\
    tsc,redo_pca,reconstruct_pca,  stimulus_on_time, stimulus_off_time,color_mat,required_pcs,time_baseline )

if files_to_do_PCA[2]== 1:
    run_analysis_allodor(Exp_Folder, filename_save_prefix_forPCA, filename_save_prefix_for_textfile, pca_components_allodor, num_pca_colors_allodor, num_samples_allodor, thresh_pca_allodor, color_map_allodor,\
    tsc,redo_pca,reconstruct_pca, stimulus_on_time, stimulus_off_time,color_mat,required_pcs,time_baseline )
    
############# Save all imput parameters
with open(Exp_Folder+filename_save_prefix_forPCA+'_save_pca_variables', 'w') as f:
    pickle.dump([pca_components_ind, num_pca_colors_ind, num_samples_ind, thresh_pca_ind, color_map_ind,\
開發者ID:seethakris,項目名稱:Olfactory-Chip-Scripts,代碼行數:33,代碼來源:main_input_script_for_pca.py

示例2: Exception

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
"""
Example standalone app for mass-univariate regression
"""

import optparse
from thunder import ThunderContext, RegressionModel


if __name__ == "__main__":
    parser = optparse.OptionParser(description="fit a regression model",
                                   usage="%prog datafile modelfile outputdir [options]")
    parser.add_option("--regressmode", choices=("mean", "linear", "bilinear"),
                      default="linear", help="form of regression")

    opts, args = parser.parse_args()
    try:
        datafile = args[0]
        modelfile = args[1]
        outputdir = args[2]
    except IndexError:
        parser.print_usage()
        raise Exception("too few arguments")

    tsc = ThunderContext.start(appName="regress")

    data = tsc.loadText(datafile)
    result = RegressionModel.load(modelfile, opts.regressmode).fit(data)

    outputdir += "-regress"
    tsc.export(result.select('stats'), outputdir, "stats", "matlab")
    tsc.export(result.select('betas'), outputdir, "betas", "matlab")
開發者ID:EricSchles,項目名稱:thunder,代碼行數:33,代碼來源:regression.py

示例3: execute

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
    def execute(self, lock, pipe):
        """
        Execute this pull request
        """
        lock.acquire()

        base, module = self.clone()

        f = open(base + 'info.json', 'r')
        info = json.loads(f.read())

        printer.status("Executing pull request %s from user %s"
                       % (self.id, self.login))
        printer.status("Branch name: %s" % self.branch)
        printer.status("Algorithm name: %s" % info['algorithm'])

        sys.path.append(module)
        run = importlib.import_module('run', module)

        spark_home = os.getenv('SPARK_HOME')
        if spark_home is None or spark_home == '':
            raise Exception('must assign the environmental variable SPARK_HOME with the location of Spark')
        sys.path.append(os.path.join(spark_home, 'python'))
        sys.path.append(os.path.join(spark_home, 'python/lib/py4j-0.8.2.1-src.zip'))

        with quiet():
            from thunder import ThunderContext
            from thunder.utils.launch import findThunderEgg
            tsc = ThunderContext.start(master=self.get_master(), appName="neurofinder")
            tsc.addPyFile(findThunderEgg())
            log4j = tsc._sc._jvm.org.apache.log4j
            log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)
            time.sleep(5)

        base_path = 'neuro.datasets.private/challenges/neurofinder.test'
        datasets = ['00.00.test', '00.01.test', '01.00.test', '01.01.test',
                    '02.00.test', '02.01.test', '03.00.test']

        metrics = {'score': [], 'recall': [], 'precision': [], 'overlap': [], 'exactness': []}

        try:
            for ii, name in enumerate(datasets):

                printer.status("Proccessing data set %s" % name)

                data_path = 's3n://' + base_path + '/' + name
                data_info = self.load_info(base_path, name)
                data = tsc.loadImages(data_path + '/images/', recursive=True,
                                      npartitions=600)
                truth = tsc.loadSources(data_path + '/sources/sources.json')
                sources = run.run(data, info=data_info)

                threshold = 6.0 / data_info['pixels-per-micron']

                recall, precision, score = truth.similarity(sources, metric='distance', minDistance=threshold)

                stats = truth.overlap(sources, method='rates', minDistance=threshold)
                if sum(~isnan(stats)) > 0:
                    overlap, exactness = tuple(nanmean(stats, axis=0))
                else:
                    overlap, exactness = 0.0, 1.0

                contributors = str(", ".join(data_info["contributors"]))
                animal = data_info["animal"]
                region = data_info["region"]
                lab = data_info["lab"]

                base = {"dataset": name, "contributors": contributors,
                        "lab": lab, "region": region, "animal": animal}

                m = {"value": score}
                m.update(base)
                metrics['score'].append(m)

                m = {"value": recall}
                m.update(base)
                metrics['recall'].append(m)

                m = {"value": precision}
                m.update(base)
                metrics['precision'].append(m)

                m = {"value": overlap}
                m.update(base)
                metrics['overlap'].append(m)

                m = {"value": exactness}
                m.update(base)
                metrics['exactness'].append(m)

                base = data.mean()
                im = sources.masks(outline=True, base=base.clip(0, percentile(base, 99.9)))
                self.post_image(im, name)

            for k in metrics.keys():
                overall = mean([v['value'] for v in metrics[k]])
                metrics[k].append({"dataset": "overall", "value": overall,
                                   "contributors": "", "region": "", "animal": ""})

            msg = "Execution successful"
#.........這裏部分代碼省略.........
開發者ID:GrantRVD,項目名稱:neurofinder,代碼行數:103,代碼來源:job.py

示例4: Exception

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
"""
Example standalone app for calculating series statistics
"""

import optparse
from thunder import ThunderContext


if __name__ == "__main__":
    parser = optparse.OptionParser(description="compute summary statistics on time series data",
                                   usage="%prog datafile outputdir mode [options]")
    parser.add_option("--preprocess", action="store_true", default=False)

    opts, args = parser.parse_args()
    try:
        datafile = args[0]
        outputdir = args[1]
        mode = args[2]
    except IndexError:
        parser.print_usage()
        raise Exception("too few arguments")

    tsc = ThunderContext.start(appName="stats")

    data = tsc.loadSeries(datafile).cache()
    vals = data.seriesStat(mode)

    outputdir += "-stats"
    tsc.export(vals, outputdir, "stats_" + mode, "matlab")
開發者ID:EricSchles,項目名稱:thunder,代碼行數:31,代碼來源:stats.py

示例5: Exception

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
from thunder import ThunderContext, RegressionModel, PCA


if __name__ == "__main__":
    parser = optparse.OptionParser(description="fit a regression model",
                                   usage="%prog datafile modelfile outputdir [options]")
    parser.add_option("--regressmode", choices=("mean", "linear", "bilinear"), help="form of regression")
    parser.add_option("--k", type=int, default=2)

    opts, args = parser.parse_args()
    try:
        datafile = args[0]
        modelfile = args[1]
        outputdir = args[2]
    except IndexError:
        parser.print_usage()
        raise Exception("too few arguments")

    tsc = ThunderContext.start(appName="regresswithpca")

    data = tsc.loadSeries(datafile)
    model = RegressionModel.load(modelfile, opts.regressmode)  # do regression
    betas, stats, resid = model.fit(data)
    pca = PCA(opts.k).fit(betas)  # do PCA
    traj = model.fit(data, pca.comps)  # get trajectories

    outputdir += "-regress"
    tsc.export(pca.comps, outputdir, "comps", "matlab")
    tsc.export(pca.latent, outputdir, "latent", "matlab")
    tsc.export(pca.scores, outputdir, "scores", "matlab")
    tsc.export(traj, outputdir, "traj", "matlab")
開發者ID:EricSchles,項目名稱:thunder,代碼行數:33,代碼來源:regresswithpca.py

示例6: execute

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
    def execute(self):
        """
        Execute this pull request
        """
        printer.status("Executing pull request %s from user %s" % (self.id, self.login))

        base, module = self.clone()

        f = open(base + 'info.json', 'r')
        info = json.loads(f.read())

        sys.path.append(module)
        run = importlib.import_module('run')

        spark = os.getenv('SPARK_HOME')
        if spark is None or spark == '':
            raise Exception('must assign the environmental variable SPARK_HOME with the location of Spark')
        sys.path.append(os.path.join(spark, 'python'))
        sys.path.append(os.path.join(spark, 'python/lib/py4j-0.8.2.1-src.zip'))

        from thunder import ThunderContext
        tsc = ThunderContext.start(master="local", appName="neurofinder")

        datasets = ['data-0', 'data-1', 'data-2', 'data-3', 'data-4', 'data-5']
        centers = [5, 7, 9, 11, 13, 15]
        metrics = {'accuracy': [], 'overlap': [], 'distance': [], 'count': [], 'area': []}

        try:
            for ii, name in enumerate(datasets):
                data, ts, truth = tsc.makeExample('sources', dims=(200, 200),
                                                  centers=centers[ii], noise=1.0, returnParams=True)
                sources = run.run(data)

                accuracy = truth.similarity(sources, metric='distance', thresh=10, minDistance=10)
                overlap = truth.overlap(sources, minDistance=10)
                distance = truth.distance(sources, minDistance=10)
                count = sources.count
                area = mean(sources.areas)

                metrics['accuracy'].append({"dataset": name, "value": accuracy})
                metrics['overlap'].append({"dataset": name, "value": nanmean(overlap)})
                metrics['distance'].append({"dataset": name, "value": nanmean(distance)})
                metrics['count'].append({"dataset": name, "value": count})
                metrics['area'].append({"dataset": name, "value": area})

                im = sources.masks(base=data.mean())
                self.post_image(im, name)

            for k in metrics.keys():
                overall = mean([v['value'] for v in metrics[k]])
                metrics[k].append({"dataset": "overall", "value": overall})

            msg = "Execution successful"
            printer.success()
            self.update_status("executed")

        except Exception:
            metrics = None
            msg = "Execution failed"
            printer.error("failed, returning error")
            print(traceback.format_exc())

        self.send_message(msg)

        return metrics, info
開發者ID:jzaremba,項目名稱:neurofinder,代碼行數:67,代碼來源:job.py

示例7: open

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
if use_existing_parameters == 1:
    with open(Exp_Folder+filename_save_prefix_forICA+'_save_ICA_variables') as f:
        ICA_components_ind, num_ICA_colors_ind, color_map_ind,\
        ICA_components_eachexp, num_ICA_colors_eachexp, color_map_eachexp,\
        ICA_components_allexp, num_ICA_colors_allexp, color_map_allexp,colors_ica = pickle.load(f)


# Go into the main function that does ICA for indiviudal trials
from ica_thunder_analysis import run_analysis_individualexps
from ica_thunder_analysis import run_analysis_eachexp
from ica_thunder_analysis import run_analysis_allexp

from thunder import ThunderContext

print 'Starting Thunder Now. Check console for details'
tsc = ThunderContext.start(appName="thunderICA")

if files_to_do_ICA[0]== 1:
    run_analysis_individualexps(Exp_Folder, filename_save_prefix_forICA, filename_save_prefix_for_textfile, ICA_components_ind, PCA_components_ind, num_ICA_colors_ind, color_map_ind,\
    tsc,redo_ICA, num_fish_used, stimulus_pulse, stimulus_on_time, stimulus_off_time,color_mat, time_baseline,colors_ica )
    
if files_to_do_ICA[1]== 1:
    run_analysis_eachexp(Exp_Folder, filename_save_prefix_forICA, filename_save_prefix_for_textfile, ICA_components_eachexp, PCA_components_eachexp, num_ICA_colors_eachexp, color_map_eachexp,\
    tsc,redo_ICA, num_fish_used, stimulus_pulse, stimulus_on_time, stimulus_off_time,color_mat, time_baseline,colors_ica )

if files_to_do_ICA[2]== 1:
    run_analysis_allexp(Exp_Folder, filename_save_prefix_forICA, filename_save_prefix_for_textfile, ICA_components_allexp, PCA_components_allexp, num_ICA_colors_allexp, color_map_allexp,\
    tsc,redo_ICA, num_fish_used, stimulus_pulse, stimulus_on_time, stimulus_off_time,color_mat, time_baseline,colors_ica )
    
############# Save all imput parameters
with open(Exp_Folder+filename_save_prefix_forICA+'_save_ICA_variables', 'w') as f:
開發者ID:seethakris,項目名稱:Light-Newthunder,代碼行數:33,代碼來源:main_input_script_for_ica.py

示例8: open

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
    color_mat = ['#00FFFF','#0000A0','#800080','#FF00FF', '#800000','#A52A2A']
    
if use_existing_parameters == 1:
    with open(Exp_Folder+filename_save_prefix+'_save_kmeans_variables') as f:
        kmeans_clusters_ind, kmeans_clusters_eachodor, kmeans_clusters_allodor, time_baseline,ignore_clusters = pickle.load(f)


# Go into the main function that does kmeans for indiviudal trials
from kmeans_thunder_analysis import run_analysis_individualodors
from kmeans_thunder_analysis import run_analysis_eachodor
from kmeans_thunder_analysis import run_analysis_allodor

from thunder import ThunderContext

print 'Starting Thunder Now. Check console for details'
tsc = ThunderContext.start(appName="thunderkmeans")

if files_to_do_kmeans[0]== 1:
    run_analysis_individualodors(Exp_Folder, filename_save_prefix, filename_save_prefix_forkmeanswithPCA, kmeans_clusters_ind,\
    stimulus_on_time, stimulus_off_time, tsc,redo_kmeans,time_baseline,redo_kmeans_colormap,ignore_clusters)
    
if files_to_do_kmeans[1]== 1:
    run_analysis_eachodor(Exp_Folder, filename_save_prefix, filename_save_prefix_forkmeanswithPCA, kmeans_clusters_eachodor, \
    stimulus_on_time, stimulus_off_time, tsc,redo_kmeans,time_baseline,redo_kmeans_colormap,ignore_clusters)

if files_to_do_kmeans[2]== 1:
    run_analysis_allodor(Exp_Folder, filename_save_prefix, filename_save_prefix_forkmeanswithPCA, kmeans_clusters_allodor, \
    stimulus_on_time, stimulus_off_time, tsc,redo_kmeans, time_baseline,redo_kmeans_colormap,ignore_clusters)
    
############# Save all imput parameters
with open(Exp_Folder+filename_save_prefix+'_save_kmeans_variables', 'w') as f:
開發者ID:seethakris,項目名稱:Olfactory-Chip-Scripts,代碼行數:33,代碼來源:main_input_script_for_kmeans.py

示例9: int

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
from thunder import ThunderContext, ICA, export


if __name__ == "__main__":
    parser = optparse.OptionParser(description="do independent components analysis",
                                   usage="%prog datafile outputdir k c [options]")
    parser.add_option("--svdmethod", choices=("direct", "em"), default="direct")
    parser.add_option("--maxiter", type=float, default=100)
    parser.add_option("--tol", type=float, default=0.000001)
    parser.add_option("--seed", type=int, default=0)

    opts, args = parser.parse_args()
    try:
        datafile = args[0]
        outputdir = args[1]
        k = int(args[2])
        c = int(args[3])
    except IndexError:
        parser.print_usage()
        raise Exception("too few arguments")

    tsc = ThunderContext.start(appName="ica")

    data = tsc.loadSeries(datafile).cache()
    model = ICA(k=k, c=c, svdmethod=opts.svdmethod, maxiter=opts.maxiter, tol=opts.tol, seed=opts.seed)
    result = model.fit(data)

    outputdir += "-ica"
    export(result.a, outputdir, "a", "matlab")
    export(result.sigs, outputdir, "sigs", "matlab")
開發者ID:edwardt,項目名稱:thunder,代碼行數:32,代碼來源:ica.py

示例10: int

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
                                   usage="%prog datafile outputdir k [options]")
    parser.add_option("--nmfmethod", choices=["als"], default="als")
    parser.add_option("--maxiter", type=float, default=20)
    parser.add_option("--tol", type=float, default=0.001)
    parser.add_option("--w_hist", action="store_true", default=False)
    parser.add_option("--recon_hist", action="store_true", default=False)

    opts, args = parser.parse_args()
    try:
        datafile = args[0]
        outputdir = args[1]
        k = int(args[2])
    except IndexError:
        parser.print_usage()
        raise Exception("too few arguments")

    tsc = ThunderContext.start(appName="nmf")

    data = tsc.loadSeries(datafile).cache()
    nmf = NMF(k=k, method=opts.nmfmethod, maxIter=opts.maxiter, tol=opts.tol,
              wHist=opts.w_hist, reconHist=opts.recon_hist)
    nmf.fit(data)

    outputdir += "-nmf"
    tsc.export(nmf.w, outputdir, "w", "matlab")
    tsc.export(nmf.h, outputdir, "h", "matlab")
    if opts.w_hist:
        tsc.export(nmf.wConvergence, outputdir, "w_convergence", "matlab")
    if opts.recon_hist:
        tsc.export(nmf.reconErr, outputdir, "rec_err", "matlab")
開發者ID:EricSchles,項目名稱:thunder,代碼行數:32,代碼來源:nmf.py

示例11:

# 需要導入模塊: from thunder import ThunderContext [as 別名]
# 或者: from thunder.ThunderContext import start [as 別名]
Exp_Folder ='/Users/seetha/Desktop/Ruey_Habenula/Habenula/Short_Stimulus/Fish104_Block2_Blue&UV1c/'
filename_save_prefix = 'Test1'


from thunder import ThunderContext

print 'Starting Thunder Now. Check console for details'
tsc = ThunderContext.start(appName="thunderNMF")
import os
filesep = os.path.sep

import matplotlib.pyplot as plt 

import numpy as np
from thunder_NMF import run_NMF
from thunder_NMF import make_NMF_maps
from thunder_NMF_plots import plot_NMF_maps

from thunder import Colorize
image = Colorize.image

Stimulus_Directories = [f for f in os.listdir(Exp_Folder) if os.path.isdir(os.path.join(Exp_Folder, f)) and f.find('Figures')<0]
#Stimulus_Directories
ii = 0
Trial_Directories = [f for f in os.listdir(os.path.join(Exp_Folder, Stimulus_Directories[ii]))\
if os.path.isdir(os.path.join(Exp_Folder, Stimulus_Directories[ii], f)) and f.find('Figures')<0]
Trial_Directories
jj = 0

stim_start = 10 #Stimulus Starting time point
stim_end = 14 #Stimulus Ending time point
開發者ID:seethakris,項目名稱:Olfactory-Chip-Scripts,代碼行數:33,代碼來源:temp_ica.py


注:本文中的thunder.ThunderContext.start方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。