當前位置: 首頁>>代碼示例>>Python>>正文


Python thunder.ThunderContext類代碼示例

本文整理匯總了Python中thunder.ThunderContext的典型用法代碼示例。如果您正苦於以下問題:Python ThunderContext類的具體用法?Python ThunderContext怎麽用?Python ThunderContext使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了ThunderContext類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_sima

    def test_sima(self):
        """
        (BlockMethod) with SIMA strategy
        """
        # NOTE: this test was brittle and failed non-deterministically with any
        # more than one source
        import sima.segment

        # construct the SIMA strategy
        simaStrategy = sima.segment.STICA(components=1)
        simaStrategy.append(sima.segment.SparseROIsFromMasks(min_size=20))
        simaStrategy.append(sima.segment.SmoothROIBoundaries())
        simaStrategy.append(sima.segment.MergeOverlapping(threshold=0.5))

        tsc = ThunderContext(self.sc)
        data = tsc.makeExample('sources', dims=(60, 60), centers=[[20, 15]], noise=0.5, seed=42)

        # create and fit the thunder extraction strategy
        strategy = SourceExtraction('sima', simaStrategy=simaStrategy)
        model = strategy.fit(data, size=(30, 30))

        assert(model.count == 1)

        # check that the one center is recovered
        ep = 1.5
        assert(model[0].distance([20, 15]) < ep)
開發者ID:EricSchles,項目名稱:thunder,代碼行數:26,代碼來源:test_extraction_methods_block.py

示例2: test_local_max

    def test_local_max(self):
        """
        (FeatureMethod) localmax with defaults
        """
        tsc = ThunderContext(self.sc)
        data = tsc.makeExample('sources', dims=[60, 60], centers=[[10, 10], [40, 40]], noise=0.0, seed=42)
        model = SourceExtraction('localmax').fit(data)

        # order is irrelevant, but one of these must be true
        cond1 = (model[0].distance([10, 10]) == 0) and (model[1].distance([40, 40]) == 0)
        cond2 = (model[0].distance([40, 40]) == 0) and (model[1].distance([10, 10]) == 0)
        assert(cond1 or cond2)
開發者ID:Wursthub,項目名稱:thunder,代碼行數:12,代碼來源:test_extraction_methods_feature.py

示例3: test_nmf

    def test_nmf(self):
        """
        (BlockMethod) nmf with defaults
        """
        tsc = ThunderContext(self.sc)
        data = tsc.makeExample('sources', dims=(60, 60), centers=[[20, 20], [40, 40]], noise=0.1, seed=42)

        model = SourceExtraction('nmf', componentsPerBlock=1).fit(data, size=(30, 30))

        # order is irrelevant, but one of these must be true
        ep = 0.50
        cond1 = (model[0].distance([20, 20]) < ep) and (model[1].distance([40, 40]) < ep)
        cond2 = (model[0].distance([40, 40]) < ep) and (model[1].distance([20, 20]) < ep)
        assert(cond1 or cond2)
開發者ID:pkaifosh,項目名稱:thunder,代碼行數:14,代碼來源:test_block_methods.py

示例4: test_sima

    def test_sima(self):
        """
        (BlockMethod) with SIMA strategy
        """
        import sima.segment

        # construct the SIMA strategy
        simaStrategy = sima.segment.STICA(components=2)
        simaStrategy.append(sima.segment.SparseROIsFromMasks(min_size=20))
        simaStrategy.append(sima.segment.SmoothROIBoundaries())
        simaStrategy.append(sima.segment.MergeOverlapping(threshold=0.5))

        tsc = ThunderContext(self.sc)
        data = tsc.makeExample('sources', dims=(60, 60), centers=[[20, 15], [40, 45]], noise=0.1, seed=42)

        # create and fit the thunder extraction strategy
        strategy = SourceExtraction('sima', simaStrategy=simaStrategy)
        model = strategy.fit(data, size=(30, 30))

        # order is irrelevant, but one of these must be true
        ep = 1.5
        cond1 = (model[0].distance([20, 15]) < ep) and (model[1].distance([40, 45]) < ep)
        cond2 = (model[1].distance([20, 15]) < ep) and (model[0].distance([40, 45]) < ep)
        assert(cond1 or cond2)
開發者ID:pkaifosh,項目名稱:thunder,代碼行數:24,代碼來源:test_block_methods.py

示例5: execute

    def execute(self, lock, pipe):
        """
        Execute this pull request
        """
        lock.acquire()

        base, module = self.clone()

        f = open(base + 'info.json', 'r')
        info = json.loads(f.read())

        printer.status("Executing pull request %s from user %s"
                       % (self.id, self.login))
        printer.status("Branch name: %s" % self.branch)
        printer.status("Algorithm name: %s" % info['algorithm'])

        sys.path.append(module)
        run = importlib.import_module('run', module)

        spark_home = os.getenv('SPARK_HOME')
        if spark_home is None or spark_home == '':
            raise Exception('must assign the environmental variable SPARK_HOME with the location of Spark')
        sys.path.append(os.path.join(spark_home, 'python'))
        sys.path.append(os.path.join(spark_home, 'python/lib/py4j-0.8.2.1-src.zip'))

        with quiet():
            from thunder import ThunderContext
            from thunder.utils.launch import findThunderEgg
            tsc = ThunderContext.start(master=self.get_master(), appName="neurofinder")
            tsc.addPyFile(findThunderEgg())
            log4j = tsc._sc._jvm.org.apache.log4j
            log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)
            time.sleep(5)

        base_path = 'neuro.datasets.private/challenges/neurofinder.test'
        datasets = ['00.00.test', '00.01.test', '01.00.test', '01.01.test',
                    '02.00.test', '02.01.test', '03.00.test']

        metrics = {'score': [], 'recall': [], 'precision': [], 'overlap': [], 'exactness': []}

        try:
            for ii, name in enumerate(datasets):

                printer.status("Proccessing data set %s" % name)

                data_path = 's3n://' + base_path + '/' + name
                data_info = self.load_info(base_path, name)
                data = tsc.loadImages(data_path + '/images/', recursive=True,
                                      npartitions=600)
                truth = tsc.loadSources(data_path + '/sources/sources.json')
                sources = run.run(data, info=data_info)

                threshold = 6.0 / data_info['pixels-per-micron']

                recall, precision, score = truth.similarity(sources, metric='distance', minDistance=threshold)

                stats = truth.overlap(sources, method='rates', minDistance=threshold)
                if sum(~isnan(stats)) > 0:
                    overlap, exactness = tuple(nanmean(stats, axis=0))
                else:
                    overlap, exactness = 0.0, 1.0

                contributors = str(", ".join(data_info["contributors"]))
                animal = data_info["animal"]
                region = data_info["region"]
                lab = data_info["lab"]

                base = {"dataset": name, "contributors": contributors,
                        "lab": lab, "region": region, "animal": animal}

                m = {"value": score}
                m.update(base)
                metrics['score'].append(m)

                m = {"value": recall}
                m.update(base)
                metrics['recall'].append(m)

                m = {"value": precision}
                m.update(base)
                metrics['precision'].append(m)

                m = {"value": overlap}
                m.update(base)
                metrics['overlap'].append(m)

                m = {"value": exactness}
                m.update(base)
                metrics['exactness'].append(m)

                base = data.mean()
                im = sources.masks(outline=True, base=base.clip(0, percentile(base, 99.9)))
                self.post_image(im, name)

            for k in metrics.keys():
                overall = mean([v['value'] for v in metrics[k]])
                metrics[k].append({"dataset": "overall", "value": overall,
                                   "contributors": "", "region": "", "animal": ""})

            msg = "Execution successful"
#.........這裏部分代碼省略.........
開發者ID:GrantRVD,項目名稱:neurofinder,代碼行數:101,代碼來源:job.py

示例6: setUp

 def setUp(self):
     super(TestContextLoading, self).setUp()
     self.tsc = ThunderContext(self.sc)
開發者ID:getBioinfo,項目名稱:thunder,代碼行數:3,代碼來源:test_context.py

示例7: SparkConf

# Load thunder
from pyspark import SparkContext, SparkConf
from thunder import Colorize, ThunderContext
image = Colorize.image
import os

#Load Sci-kit image
from skimage.viewer import ImageViewer as skImageViewer

#Load spark context
conf = SparkConf() \
    .setAppName("Display face") \
    .set("spark.executor.memory", "5g")
sc = SparkContext(conf=conf)
#load thunder bolt context
tsc = ThunderContext(sc)

# Load image using thunder
data = tsc.loadImages(os.path.dirname(os.path.realpath(__file__))+'/mush.png',inputFormat='png')
img  = data.first()[1]

# Display image using Sci-kit image
viewer = skImageViewer(img[:,:,0])
viewer.show()
開發者ID:venkatesh369,項目名稱:CS-Project,代碼行數:24,代碼來源:LoadAndDisplayImage.py

示例8: execute

    def execute(self):
        """
        Execute this pull request
        """
        printer.status("Executing pull request %s from user %s" % (self.id, self.login))

        base, module = self.clone()

        f = open(base + 'info.json', 'r')
        info = json.loads(f.read())

        sys.path.append(module)
        run = importlib.import_module('run')

        spark = os.getenv('SPARK_HOME')
        if spark is None or spark == '':
            raise Exception('must assign the environmental variable SPARK_HOME with the location of Spark')
        sys.path.append(os.path.join(spark, 'python'))
        sys.path.append(os.path.join(spark, 'python/lib/py4j-0.8.2.1-src.zip'))

        from thunder import ThunderContext
        tsc = ThunderContext.start(master="local", appName="neurofinder")

        datasets = ['data-0', 'data-1', 'data-2', 'data-3', 'data-4', 'data-5']
        centers = [5, 7, 9, 11, 13, 15]
        metrics = {'accuracy': [], 'overlap': [], 'distance': [], 'count': [], 'area': []}

        try:
            for ii, name in enumerate(datasets):
                data, ts, truth = tsc.makeExample('sources', dims=(200, 200),
                                                  centers=centers[ii], noise=1.0, returnParams=True)
                sources = run.run(data)

                accuracy = truth.similarity(sources, metric='distance', thresh=10, minDistance=10)
                overlap = truth.overlap(sources, minDistance=10)
                distance = truth.distance(sources, minDistance=10)
                count = sources.count
                area = mean(sources.areas)

                metrics['accuracy'].append({"dataset": name, "value": accuracy})
                metrics['overlap'].append({"dataset": name, "value": nanmean(overlap)})
                metrics['distance'].append({"dataset": name, "value": nanmean(distance)})
                metrics['count'].append({"dataset": name, "value": count})
                metrics['area'].append({"dataset": name, "value": area})

                im = sources.masks(base=data.mean())
                self.post_image(im, name)

            for k in metrics.keys():
                overall = mean([v['value'] for v in metrics[k]])
                metrics[k].append({"dataset": "overall", "value": overall})

            msg = "Execution successful"
            printer.success()
            self.update_status("executed")

        except Exception:
            metrics = None
            msg = "Execution failed"
            printer.error("failed, returning error")
            print(traceback.format_exc())

        self.send_message(msg)

        return metrics, info
開發者ID:jzaremba,項目名稱:neurofinder,代碼行數:65,代碼來源:job.py

示例9: TestContextLoading

class TestContextLoading(PySparkTestCaseWithOutputDir):
    def setUp(self):
        super(TestContextLoading, self).setUp()
        self.tsc = ThunderContext(self.sc)

    @staticmethod
    def _findTestResourcesDir(resourcesdirname="resources"):
        testdirpath = os.path.dirname(os.path.realpath(__file__))
        testresourcesdirpath = os.path.join(testdirpath, resourcesdirname)
        if not os.path.isdir(testresourcesdirpath):
            raise IOError("Test resources directory "+testresourcesdirpath+" not found")
        return testresourcesdirpath

    def __run_loadStacksAsSeries(self, shuffle):
        rangeary = np.arange(64*128, dtype=np.dtype('int16'))
        filepath = os.path.join(self.outputdir, "rangeary.stack")
        rangeary.tofile(filepath)
        expectedary = rangeary.reshape((128, 64), order='F')

        range_series = self.tsc.loadImagesAsSeries(filepath, dims=(128, 64), shuffle=shuffle)
        range_series_ary = range_series.pack()

        assert_equals((128, 64), range_series.dims.count)
        assert_equals((128, 64), range_series_ary.shape)
        assert_true(np.array_equal(expectedary, range_series_ary))

    def test_loadStacksAsSeriesNoShuffle(self):
        self.__run_loadStacksAsSeries(False)

    def test_loadStacksAsSeriesWithShuffle(self):
        self.__run_loadStacksAsSeries(True)

    def __run_load3dStackAsSeries(self, shuffle):
        rangeary = np.arange(32*64*4, dtype=np.dtype('int16'))
        filepath = os.path.join(self.outputdir, "rangeary.stack")
        rangeary.tofile(filepath)
        expectedary = rangeary.reshape((32, 64, 4), order='F')

        range_series_noshuffle = self.tsc.loadImagesAsSeries(filepath, dims=(32, 64, 4), shuffle=shuffle)
        range_series_noshuffle_ary = range_series_noshuffle.pack()

        assert_equals((32, 64, 4), range_series_noshuffle.dims.count)
        assert_equals((32, 64, 4), range_series_noshuffle_ary.shape)
        assert_true(np.array_equal(expectedary, range_series_noshuffle_ary))

    def test_load3dStackAsSeriesNoShuffle(self):
        self.__run_load3dStackAsSeries(False)

    def test_load3dStackAsSeriesWithShuffle(self):
        self.__run_load3dStackAsSeries(True)

    def __run_loadMultipleStacksAsSeries(self, shuffle):
        rangeary = np.arange(64*128, dtype=np.dtype('int16'))
        filepath = os.path.join(self.outputdir, "rangeary01.stack")
        rangeary.tofile(filepath)
        expectedary = rangeary.reshape((128, 64), order='F')
        rangeary2 = np.arange(64*128, 2*64*128, dtype=np.dtype('int16'))
        filepath = os.path.join(self.outputdir, "rangeary02.stack")
        rangeary2.tofile(filepath)
        expectedary2 = rangeary2.reshape((128, 64), order='F')

        range_series = self.tsc.loadImagesAsSeries(self.outputdir, dims=(128, 64), shuffle=shuffle)
        range_series_ary = range_series.pack()
        range_series_ary_xpose = range_series.pack(transpose=True)

        assert_equals((128, 64), range_series.dims.count)
        assert_equals((2, 128, 64), range_series_ary.shape)
        assert_equals((2, 64, 128), range_series_ary_xpose.shape)
        assert_true(np.array_equal(expectedary, range_series_ary[0]))
        assert_true(np.array_equal(expectedary2, range_series_ary[1]))
        assert_true(np.array_equal(expectedary.T, range_series_ary_xpose[0]))
        assert_true(np.array_equal(expectedary2.T, range_series_ary_xpose[1]))

    def test_loadMultipleStacksAsSeriesNoShuffle(self):
        self.__run_loadMultipleStacksAsSeries(False)

    def test_loadMultipleStacksAsSeriesWithShuffle(self):
        self.__run_loadMultipleStacksAsSeries(True)

    def __run_loadTifAsSeries(self, shuffle):
        tmpary = np.arange(60*120, dtype=np.dtype('uint16'))
        rangeary = np.mod(tmpary, 255).astype('uint8').reshape((60, 120))
        pilimg = Image.fromarray(rangeary)
        filepath = os.path.join(self.outputdir, "rangetif01.tif")
        pilimg.save(filepath)
        del pilimg, tmpary

        range_series = self.tsc.loadImagesAsSeries(self.outputdir, inputformat="tif-stack", shuffle=shuffle)
        range_series_ary = range_series.pack()

        assert_equals((60, 120, 1), range_series.dims.count)
        assert_equals((60, 120), range_series_ary.shape)
        assert_true(np.array_equal(rangeary, range_series_ary))

    @unittest.skipIf(not _have_image, "PIL/pillow not installed or not functional")
    def test_loadTifAsSeriesNoShuffle(self):
        self.__run_loadTifAsSeries(False)

    @unittest.skipIf(not _have_image, "PIL/pillow not installed or not functional")
    def test_loadTifAsSeriesWithShuffle(self):
#.........這裏部分代碼省略.........
開發者ID:getBioinfo,項目名稱:thunder,代碼行數:101,代碼來源:test_context.py

示例10: open

if use_existing_parameters == 1:
    with open(Exp_Folder+filename_save_prefix_forICA+'_save_ICA_variables') as f:
        ICA_components_ind, num_ICA_colors_ind, color_map_ind,\
        ICA_components_eachexp, num_ICA_colors_eachexp, color_map_eachexp,\
        ICA_components_allexp, num_ICA_colors_allexp, color_map_allexp,colors_ica = pickle.load(f)


# Go into the main function that does ICA for indiviudal trials
from ica_thunder_analysis import run_analysis_individualexps
from ica_thunder_analysis import run_analysis_eachexp
from ica_thunder_analysis import run_analysis_allexp

from thunder import ThunderContext

print 'Starting Thunder Now. Check console for details'
tsc = ThunderContext.start(appName="thunderICA")

if files_to_do_ICA[0]== 1:
    run_analysis_individualexps(Exp_Folder, filename_save_prefix_forICA, filename_save_prefix_for_textfile, ICA_components_ind, PCA_components_ind, num_ICA_colors_ind, color_map_ind,\
    tsc,redo_ICA, num_fish_used, stimulus_pulse, stimulus_on_time, stimulus_off_time,color_mat, time_baseline,colors_ica )
    
if files_to_do_ICA[1]== 1:
    run_analysis_eachexp(Exp_Folder, filename_save_prefix_forICA, filename_save_prefix_for_textfile, ICA_components_eachexp, PCA_components_eachexp, num_ICA_colors_eachexp, color_map_eachexp,\
    tsc,redo_ICA, num_fish_used, stimulus_pulse, stimulus_on_time, stimulus_off_time,color_mat, time_baseline,colors_ica )

if files_to_do_ICA[2]== 1:
    run_analysis_allexp(Exp_Folder, filename_save_prefix_forICA, filename_save_prefix_for_textfile, ICA_components_allexp, PCA_components_allexp, num_ICA_colors_allexp, color_map_allexp,\
    tsc,redo_ICA, num_fish_used, stimulus_pulse, stimulus_on_time, stimulus_off_time,color_mat, time_baseline,colors_ica )
    
############# Save all imput parameters
with open(Exp_Folder+filename_save_prefix_forICA+'_save_ICA_variables', 'w') as f:
開發者ID:seethakris,項目名稱:Light-Newthunder,代碼行數:31,代碼來源:main_input_script_for_ica.py

示例11: Exception

from thunder import ThunderContext, RegressionModel, PCA


if __name__ == "__main__":
    parser = optparse.OptionParser(description="fit a regression model",
                                   usage="%prog datafile modelfile outputdir [options]")
    parser.add_option("--regressmode", choices=("mean", "linear", "bilinear"), help="form of regression")
    parser.add_option("--k", type=int, default=2)

    opts, args = parser.parse_args()
    try:
        datafile = args[0]
        modelfile = args[1]
        outputdir = args[2]
    except IndexError:
        parser.print_usage()
        raise Exception("too few arguments")

    tsc = ThunderContext.start(appName="regresswithpca")

    data = tsc.loadSeries(datafile)
    model = RegressionModel.load(modelfile, opts.regressmode)  # do regression
    betas, stats, resid = model.fit(data)
    pca = PCA(opts.k).fit(betas)  # do PCA
    traj = model.fit(data, pca.comps)  # get trajectories

    outputdir += "-regress"
    tsc.export(pca.comps, outputdir, "comps", "matlab")
    tsc.export(pca.latent, outputdir, "latent", "matlab")
    tsc.export(pca.scores, outputdir, "scores", "matlab")
    tsc.export(traj, outputdir, "traj", "matlab")
開發者ID:EricSchles,項目名稱:thunder,代碼行數:31,代碼來源:regresswithpca.py

示例12: open

stimulus_pulse = 1
if stimulus_pulse == 1:
    stimulus_on_time = [10,28,47,65,83,101]
    stimulus_off_time = [14,32,51,69,87,105]
    color_mat = ['#00FFFF','#0000A0','#800080','#FF00FF', '#800000','#A52A2A']


# Go into the main function that does pca for indiviudal trials
from pca_thunder_analysis import run_analysis_individualodors
from pca_thunder_analysis import run_analysis_eachodor
from pca_thunder_analysis import run_analysis_allodor

from thunder import ThunderContext

print 'Starting Thunder Now. Check console for details'
tsc = ThunderContext.start(appName="thunderpca")

if files_to_do_PCA[0]== 1:
    run_analysis_individualodors(Exp_Folder, filename_save_prefix_forPCA, filename_save_prefix_for_textfile, pca_components_ind, num_pca_colors_ind, num_samples_ind, thresh_pca_ind, color_map_ind,\
    tsc,redo_pca,reconstruct_pca, stimulus_on_time, stimulus_off_time,color_mat,required_pcs,time_baseline )
if files_to_do_PCA[1]== 1:
    run_analysis_eachodor(Exp_Folder, filename_save_prefix_forPCA, filename_save_prefix_for_textfile, pca_components_eachodor, num_pca_colors_eachodor, num_samples_eachodor, thresh_pca_eachodor, color_map_eachodor,\
    tsc,redo_pca,reconstruct_pca,  stimulus_on_time, stimulus_off_time,color_mat,required_pcs,time_baseline )

if files_to_do_PCA[2]== 1:
    run_analysis_allodor(Exp_Folder, filename_save_prefix_forPCA, filename_save_prefix_for_textfile, pca_components_allodor, num_pca_colors_allodor, num_samples_allodor, thresh_pca_allodor, color_map_allodor,\
    tsc,redo_pca,reconstruct_pca, stimulus_on_time, stimulus_off_time,color_mat,required_pcs,time_baseline )
    
############# Save all imput parameters
with open(Exp_Folder+filename_save_prefix_forPCA+'_save_pca_variables', 'w') as f:
    pickle.dump([pca_components_ind, num_pca_colors_ind, num_samples_ind, thresh_pca_ind, color_map_ind,\
開發者ID:seethakris,項目名稱:Olfactory-Chip-Scripts,代碼行數:31,代碼來源:main_input_script_for_pca.py

示例13: SparkConf

    )

    print "Found {0} faces!".format(len(faces))

    # Draw a rectangle around the faces
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), -1)
    return img


# Load images using thundear and pass it to OpenCV haar cascase one by one
if __name__ == "__main__":
    # Define Spark and Thunder context
    conf = SparkConf().setAppName("Collaborative Filter").set("spark.executor.memory", "5g")
    sc = SparkContext(conf=conf)
    tsc = ThunderContext(sc)

    # Load all images in data directory
    data = tsc.loadImages("/home/vj/Desktop/CS-Project/data", inputFormat="png")

    # Loop through each image and convert them to gray
    grayImages = data.apply(lambda (k, v): (k, convertToGray(v)))

    # Loop through all the gray images and find faces
    FaceImages = grayImages.apply(lambda (k, v): (k, detectFaces(v)))
    print (data.dims)
    print (data.nrecords)
    cv2.imshow("image1", grayImages[0])
    cv2.imshow("Face detected1", FaceImages[0])
    cv2.imshow("image2", grayImages[1])
    cv2.imshow("Face detected2", FaceImages[1])
開發者ID:venkatesh369,項目名稱:CS-Project,代碼行數:31,代碼來源:FaceDetect.py

示例14:

Exp_Folder ='/Users/seetha/Desktop/Ruey_Habenula/Habenula/Short_Stimulus/Fish104_Block2_Blue&UV1c/'
filename_save_prefix = 'Test1'


from thunder import ThunderContext

print 'Starting Thunder Now. Check console for details'
tsc = ThunderContext.start(appName="thunderNMF")
import os
filesep = os.path.sep

import matplotlib.pyplot as plt 

import numpy as np
from thunder_NMF import run_NMF
from thunder_NMF import make_NMF_maps
from thunder_NMF_plots import plot_NMF_maps

from thunder import Colorize
image = Colorize.image

Stimulus_Directories = [f for f in os.listdir(Exp_Folder) if os.path.isdir(os.path.join(Exp_Folder, f)) and f.find('Figures')<0]
#Stimulus_Directories
ii = 0
Trial_Directories = [f for f in os.listdir(os.path.join(Exp_Folder, Stimulus_Directories[ii]))\
if os.path.isdir(os.path.join(Exp_Folder, Stimulus_Directories[ii], f)) and f.find('Figures')<0]
Trial_Directories
jj = 0

stim_start = 10 #Stimulus Starting time point
stim_end = 14 #Stimulus Ending time point
開發者ID:seethakris,項目名稱:Olfactory-Chip-Scripts,代碼行數:31,代碼來源:temp_ica.py

示例15: Exception

"""
Example standalone app for calculating series statistics
"""

import optparse
from thunder import ThunderContext


if __name__ == "__main__":
    parser = optparse.OptionParser(description="compute summary statistics on time series data",
                                   usage="%prog datafile outputdir mode [options]")
    parser.add_option("--preprocess", action="store_true", default=False)

    opts, args = parser.parse_args()
    try:
        datafile = args[0]
        outputdir = args[1]
        mode = args[2]
    except IndexError:
        parser.print_usage()
        raise Exception("too few arguments")

    tsc = ThunderContext.start(appName="stats")

    data = tsc.loadSeries(datafile).cache()
    vals = data.seriesStat(mode)

    outputdir += "-stats"
    tsc.export(vals, outputdir, "stats_" + mode, "matlab")
開發者ID:EricSchles,項目名稱:thunder,代碼行數:29,代碼來源:stats.py


注:本文中的thunder.ThunderContext類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。