本文整理匯總了Python中tgrocery.Grocery.train方法的典型用法代碼示例。如果您正苦於以下問題:Python Grocery.train方法的具體用法?Python Grocery.train怎麽用?Python Grocery.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tgrocery.Grocery
的用法示例。
在下文中一共展示了Grocery.train方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
def train():
print 'train start '+'.'*30
#grocery=Grocery('sample')
grocery=Grocery('version1.0')
grocery.train(trainlist)
grocery.save()
print 'train end '+'.'*30
示例2: tGrocery
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
def tGrocery():
outFile = open('testResult.tmp', 'w')
[trainingSet, benchmark] = pickle.load(open('SampleSeg.pk'))
testingSet = []
correctLabel = []
for i in xrange(len(benchmark)):
print '%d out of %d' % (i, len(benchmark))
testingSet.append(benchmark[i][1])
correctLabel.append(benchmark[i][0])
grocery = Grocery('test')
grocery.train(trainingSet)
grocery.save()
# load
new_grocery = Grocery('test')
new_grocery.load()
Prediction = []
for i in xrange(len(testingSet)):
print '%d out of %d' % (i, len(testingSet))
prediction = new_grocery.predict(testingSet[i])
Prediction.append(prediction)
temp = correctLabel[i] + '<-->' + prediction + ' /x01' + testingSet[i] + '\n'
outFile.write(temp)
correct = 0
for i in xrange(len(Prediction)):
print Prediction[i], correctLabel[i],
if Prediction[i] == correctLabel[i]:
correct += 1
print 'Correct'
else:
print 'False'
print 'Correct Count:', correct
print 'Accuracy: %f' % (1.0 * correct / len(Prediction))
示例3: GroceryModel
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
class GroceryModel(object):
def __init__(self):
self.grocery = Grocery('TextClassify')
def train(self,train_file):
f = open(train_file,'r')
line = f.readline().decode('utf8')
dataset = []
while line:
tmp = line.split('\t')
dataset.append((tmp[0],''.join(tmp[1:])))
line = f.readline().decode('utf8')
f.close()
self.grocery.train(dataset)
self.grocery.save()
def load_model(self):
self.grocery.load()
def test(self,test_src):
self.load_model()
f = open(test_src,'r')
line = f.readline().decode('utf8')
dataset = []
while line:
tmp = line.split('\t')
dataset.append((tmp[0],''.join(tmp[1:])))
line = f.readline().decode('utf8')
f.close()
result = self.grocery.test(dataset)
print result
def predict(self,text):
print self.grocery.predict(text)
示例4: __train__model__
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
def __train__model__():
dataframe = pd.read_excel(Classify.__FILE_PATH__)
data = dataframe[[u'類型', u'釋義']]
train_data = [(x[0],x[1]) for x in data.values]
grocery = Grocery('Classify')
grocery.train(train_data)
grocery.save()
Classify.__MODEL__ = grocery
示例5: test_grocery
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
def test_grocery():
grocery = Grocery('model_redian')
grocery.train('trdata_4.txt')
grocery.save()
new_grocery = Grocery('model_redian')
new_grocery.load()
test_result = new_grocery.test('tedata_4.txt')
print test_result.accuracy_labels
print test_result.recall_labels
test_result.show_result()
示例6: test_main
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
def test_main(self):
grocery = Grocery(self.grocery_name)
grocery.train(self.train_src)
grocery.save()
new_grocery = Grocery('test')
new_grocery.load()
assert grocery.get_load_status()
assert grocery.predict('考生必讀:新托福寫作考試評分標準') == 'education'
# cleanup
if self.grocery_name and os.path.exists(self.grocery_name):
shutil.rmtree(self.grocery_name)
示例7: sentiment_train
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
def sentiment_train(gro_name, train_set):
"""
:param gro_name:
:param train_set:
:return:
"""
gro_ins = Grocery(gro_name)
# gro_ins.load()
gro_ins.train(train_set)
print("Is trained? ", gro_ins.get_load_status())
gro_ins.save()
示例8: MyGrocery
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
class MyGrocery(object):
def __init__(self, name):
super(MyGrocery, self).__init__()
self.grocery = Grocery(name)
self.loaded = False
self.correct = 1.0
def train(self, src):
lines = []
for line in csv.reader(open(src)):
label, s = line[0],line[1]
text = s.decode('utf8')
lines.append((label, text))
self.grocery.train(lines)
def save_model(self):
self.grocery.save()
def train_and_save(self, src):
self.train(src)
self.save_model()
def load_model(self):
if not self.loaded:
self.grocery.load()
self.loaded = True
def predict(self, text):
self.load_model()
return self.grocery.predict(text)
def test(self, src):
self.load_model()
total, wrong_num = 0.0, 0.0
for line in csv.reader(open(src)):
total += 1
if line[0] != self.predict(line[1]):
wrong_num += 1
print "load test file from " + src
correct = (total - wrong_num ) / total
self.correct = correct
print "total: %d , wrong_num: %d, success percentage: %f" %(total, wrong_num, correct)
result = dict(type="test", total=total, wrong_num=wrong_num, correct=correct)
return json.dumps(result)
示例9: print
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
if(i%5000==0):
print ("%d "%(i))+'#'*30
str=line.split(u',')
count=str.__len__()
if(count<2):
print 'error happen'+"#"*30
continue
#print count
#print str
trainstr=(str[0],str[1])
trainlist.append(trainstr)
#print str[1]+u','+str[2]
grocery=Grocery('sample')
grocery.train(trainlist)
grocery.save()
filein.close()
# test ##################################
print 'start test'
TP=0.0
TN=0.0
FP=0.0
FN=0.0
filetest=codecs.open(validateFileName,'r','utf-8')
test_reader=filetest.readlines()
resultlist=[]
示例10: Grocery
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
from tgrocery import Grocery
data_dir = "../data/"
src_fn = data_dir + 'train_set_100.txt'
grocery = Grocery('backout_reason')
grocery.train(src_fn)
tp_cnt = {}
f = open(data_dir + 'type.txt')
for line in f:
tps = line.split()
tp_cnt[tps[1]] = 0
f.close()
f = open(data_dir + 'bcmtmoz.merge')
for line in f:
tp = grocery.predict(line)
tp_cnt[tp] += 1
print tp_cnt
示例11: reload
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import MySQLdb
from tgrocery import Grocery
import sys
reload(sys)
sys.setdefaultencoding('utf8')
grocery = Grocery('sample')
dict_list = list()
conn = MySQLdb.connect(host = 'localhost', db = 'newsdata', user = 'root', passwd = 'root', charset = 'utf8', use_unicode = False)
cur = conn.cursor()
cur.execute('select com_new_type_id, com_new_name from tbl_new where com_new_type_id is not null')
for row in cur.fetchall():
dict_list.append(row)
grocery.train(dict_list)
grocery.save()
news_grocery = Grocery('sample')
news_grocery.load()
while True:
result = news_grocery.predict(raw_input('please input title:' ))
print result
示例12: traditionalize
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
def traditionalize(text):
return opencc.convert(text, config='zhs2zht.ini').encode('utf-8')
if __name__ == '__main__':
if len(sys.argv) == 6:
# ======= Trainning News Category =======
# Depends on current news classifier
ebCawler = EBCawler()
# Warning!!! - Need web connection
ebCawler.getCurrentXML()
# for data in ebCawler.getTranningData():
# print len(ebCawler.getTranningData())
grocery = Grocery('sample')
grocery.train(ebCawler.getTranningData())
# ======= Simplify All Original Docs =======
originDocs_Dir = sys.argv[1]
outputDocs_Dir = sys.argv[2]
outputWithCateDocs_Dir = sys.argv[3]
tranningCSV = sys.argv[4]
queryDir = sys.argv[5]
originDocs = OriginDocs(originDocs_Dir, outputDocs_Dir)
# originDocs.simplifyAllDoc();
# ======= Category Original Docs and save to json file =======
# for x in os.listdir(outputDocs_Dir):
# if x == ".DS_Store":
# continue
# content = None
示例13:
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
train_listc=[]
i=0
q=0
for c in mycontent:
if c:
k=mysign[q]
p=[k,c]
train_listc.append(p)
q=q+1
for t in mytitle:
m=mysign[i]
n=[m,t]
train_list.append(n)
i=i+1
grocery.train(train_listc)
grocery.train(train_list)
grocery.save()
new_grocery=Grocery('trydb')
new_grocery.load()
pc=message.getContent1()
pt=message.getTitle1()
g=1
for newscontent in pc:
if newscontent:
num=new_grocery.predict(newscontent+pt[g-1])
message.saveContent(g,num)
else:
num=new_grocery.predict(pt[g-1])
message.saveContent(g,num)
示例14: Grocery
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
# coding: utf-8
from tgrocery import Grocery
# pass a tokenizer, must be a python func
custom_grocery = Grocery('custom', custom_tokenize=list)
train_src = [
('education', '名師指導托福語法技巧:名詞的複數形式'),
('education', '中國高考成績海外認可 是“狼來了”嗎?'),
('sports', '圖文:法網孟菲爾斯苦戰進16強 孟菲爾斯怒吼'),
('sports', '四川丹棱舉行全國長距登山挑戰賽 近萬人參與')
]
custom_grocery.train(train_src)
print custom_grocery.get_load_status()
print custom_grocery.predict('考生必讀:新托福寫作考試評分標準')
示例15: DataFrame
# 需要導入模塊: from tgrocery import Grocery [as 別名]
# 或者: from tgrocery.Grocery import train [as 別名]
else :
tdic['id'].append(_id)
tdic['type'].append(_type)
tdic['contents'].append(contents)
i +=1
#train = pd.read_csv( train_file, header = 0, delimiter = "\t", quoting = 3 )
#test = pd.read_csv( test_file, header = 1, delimiter = "\t", quoting = 3 )
train = DataFrame(dic)
test = DataFrame(tdic)
#
#classfynews_instance 是模型保存路徑
grocery = Grocery('classfynews_instance')
train_in = [train['contents'],train['type']]
grocery.train(train_in)
print grocery.get_load_status()
#grocery.save()
copy_grocery = Grocery('classfynews_instance')
copy_grocery.load()
#copy_grocery = grocery
test_in = [test['contents'],test['type']]
#輸入類似 ['我是中國人','台北*****']
#輸出 [11,12]
test_result = copy_grocery.predict(test['contents'])
print test_result.predicted_y
#test_result = copy_grocery.test(test_in)
#print test_result.show_result()