當前位置: 首頁>>代碼示例>>Python>>正文


Python StimulusModel.signal方法代碼示例

本文整理匯總了Python中sparkle.stim.stimulus_model.StimulusModel.signal方法的典型用法代碼示例。如果您正苦於以下問題:Python StimulusModel.signal方法的具體用法?Python StimulusModel.signal怎麽用?Python StimulusModel.signal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sparkle.stim.stimulus_model.StimulusModel的用法示例。


在下文中一共展示了StimulusModel.signal方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: TestStimModel

# 需要導入模塊: from sparkle.stim.stimulus_model import StimulusModel [as 別名]
# 或者: from sparkle.stim.stimulus_model.StimulusModel import signal [as 別名]
class TestStimModel():
    def setup(self):
        self.model = StimulusModel()
        self.model.setReferenceVoltage(100, 0.1)
        self.model.setMaxVoltage(MAXV, DEVICE_MAXV)
        self.model.setMinVoltage(0.005)

    def test_insert_data(self):
        fake_component0 = 'ducks'
        fake_component1 = 'frogs'
        self.model.insertComponent(fake_component0, 0, 0)
        self.model.insertComponent(fake_component1, 0, 0)
        assert self.model.component(0,0) == fake_component1
        assert self.model.component(0,1) == fake_component0

    def test_remove_data(self):
        fake_component0 = 'ducks'
        self.model.insertComponent(fake_component0, 0, 0)
        self.model.removeComponent(0,0)
        assert self.model.component(0,0) == None

    def test_component_index(self):
        fake_component0 = 'ducks'
        # component will be added to the lowest index in row
        self.model.insertComponent(fake_component0, 0, 2)
        index = self.model.indexByComponent(fake_component0)
        assert index == (0,0)

    @raises(IndexError)
    def test_set_data(self):
        fake_component0 = 'ducks'
        self.model.overwriteComponent(fake_component0, 0, 0)

    def test_row_column_count(self):
        fake_component0 = 'ducks'
        self.model.insertComponent(fake_component0, 0, 0)
        assert self.model.columnCountForRow(0) == 1
        assert self.model.rowCount() == 1

    def test_trace_count_no_auto(self):
        component0 = PureTone()
        component1 = PureTone()
        self.model.insertComponent(component0, 0,0)
        self.model.insertComponent(component1, 0,0)

        assert self.model.traceCount() == 1

    def test_trace_count_no_components(self):
        self.add_auto_param(self.model)        

        assert self.model.traceCount() == 0

    def test_trace_count_with_auto(self):
        component = PureTone()
        self.model.insertComponent(component, 0,0)     

        nsteps = self.add_auto_param(self.model)        

        assert self.model.traceCount() == nsteps

    def test_model_contains(self):
        component = PureTone()
        self.model.insertComponent(component, 0,0)

        assert self.model.contains('PureTone')

    def test_expanded_stim_no_auto(self):
        """signal of a model without any auto parameters"""
        component = PureTone()
        self.model.insertComponent(component, 0,0)

        signals, doc, ovld = self.model.expandedStim()
        assert len(signals) == 1
        assert_equal(signals[0][0].shape[0], component.duration()*self.model.samplerate())
        assert len(doc) == 1
        assert doc[0]['samplerate_da'] == self.model.samplerate()

    def test_expanded_stim_with_auto(self):
        component = PureTone()
        self.model.insertComponent(component, 0,0)       
        nsteps = self.add_auto_param(self.model)        

        signals, doc, ovld = self.model.expandedStim()
        assert len(signals) == nsteps
        assert len(doc) == nsteps
        assert doc[0]['samplerate_da'] == self.model.samplerate()

    def test_expaned_stim_with_vocal_auto(self):
        component = Vocalization()
        component.setFile(sample.samplewav())
        self.model.insertComponent(component, 0,0)       
        nsteps = self.add_vocal_param(self.model)        

        signals, doc, ovld = self.model.expandedStim()
        assert len(signals) == nsteps
        assert len(doc) == nsteps
        assert doc[0]['samplerate_da'] == self.model.samplerate()

    def test_signal_eq_caldb(self):
        caldb = 100
#.........這裏部分代碼省略.........
開發者ID:boylea,項目名稱:sparkle,代碼行數:103,代碼來源:test_stim_model.py

示例2: CalibrationRunner

# 需要導入模塊: from sparkle.stim.stimulus_model import StimulusModel [as 別名]
# 或者: from sparkle.stim.stimulus_model.StimulusModel import signal [as 別名]

#.........這裏部分代碼省略.........
    def _initialize_run(self):
       
        self.player.set_aochan(self.aochan)
        self.player.set_aichan(self.aichan)

        if self.apply_cal:
            self.protocol_model.setCalibration(self.calibration_vector, self.calibration_freqs, self.calibration_frange)
            # calibration testing doesn't save anything
            self.save_data = False
        else:
            data_items = self.datafile.keys()
            self.current_dataset_name = next_str_num(self.group_name, data_items)
            
            self.datafile.init_group(self.current_dataset_name, mode='calibration')
            
            logger = logging.getLogger('main')
            logger.debug('Calibrating with fs %s' %  self.stimulus.samplerate())

            self.datafile.init_data(self.current_dataset_name, mode='calibration', 
                                    dims=(self.stimulus.repCount(), self.stimulus.duration()*self.stimulus.samplerate()))

            info = {'samplerate_ad': self.player.aifs}
            self.datafile.set_metadata(self.current_dataset_name, info)
            # point is to output the signal at the specificed voltage, to we set
            # the intensity of the components to match whatever the caldb is now
            self.save_data = True
            self.stimulus.component(0,0).setIntensity(self.caldb)
            print 'USING {} V, {} Hz, {} dBSPL'.format(self.calv, self.calf, self.caldb)
            self.reftone.setIntensity(self.caldb)
            self.reftone.setFrequency(self.calf)
            self.protocol_model.insert(self.refstim,0)
            self.calname = None
            self.protocol_model.setCalibration(None, None, None)

            self.datafile.init_data(self.current_dataset_name, mode='calibration',
                                    nested_name='reference_tone',
                                    dims=(self.stimulus.repCount(), self.stimulus.duration()*self.stimulus.samplerate()))

    def _initialize_test(self, test):
        assert test.samplerate() == self.player.aifs

    def _process_response(self, response, trace_info, irep):
        if self.save_data:
            if trace_info['components'][0]['stim_type'] == 'Pure Tone':
                self.datafile.append(self.current_dataset_name, response, nested_name='reference_tone')
            elif trace_info['components'][0]['stim_type'] == 'FM Sweep' or trace_info['components'][0]['stim_type'] == 'White Noise':
                self.datafile.append(self.current_dataset_name, response)
            else:
                raise Exception("Improper calibration stimulus : {}".format(trace_info['components'][0]['stim_type']))

    def process_calibration(self, save=True):
        """processes calibration control signal. Determines transfer function
        of speaker to get frequency vs. attenuation curve.

        :param save: Whether to save this calibration data to file
        :type save: bool
        :returns: numpy.ndarray, str, int, float -- frequency response (in dB), dataset name, calibration reference frequency, reference intensity
        """
        if not self.save_data:
            raise Exception("Cannot process an unsaved calibration")
            
        avg_signal = np.mean(self.datafile.get_data(self.current_dataset_name + '/signal'), axis=0)

        diffdB = attenuation_curve(self.stimulus.signal()[0], avg_signal,
                                        self.stimulus.samplerate(), self.calf)
        logger = logging.getLogger('main')
        logger.debug('The maximum dB attenuation is {}, caldB {}'.format(max(diffdB), self.caldb))

        # save a vector of only the calibration intensity results
        self.datafile.init_data(self.current_dataset_name, mode='calibration',
                                dims=diffdB.shape,
                                nested_name='calibration_intensities')
        self.datafile.append(self.current_dataset_name, diffdB,
                             nested_name='calibration_intensities')

        relevant_info = {'frequencies': 'all', 'calibration_dB':self.caldb,
                         'calibration_voltage': self.calv, 'calibration_frequency': self.calf,
                         }
        self.datafile.set_metadata('/'.join([self.current_dataset_name, 'calibration_intensities']),
                                   relevant_info)

        mean_reftone = np.mean(self.datafile.get_data(self.current_dataset_name + '/reference_tone'), axis=0)
        tone_amp = signal_amplitude(mean_reftone, self.player.get_aifs())
        db = calc_db(tone_amp, self.mphonesens, self.mphonedb)
        # remove the reference tone from protocol
        self.protocol_model.remove(0)
        
        return diffdB, self.current_dataset_name, self.calf, db

    def set_reps(self, reps):
        """set the number of repetitions for the stimuli (reference tone and cal stim)

        :param reps: number of times to present the same stimulus
        :type reps: int
        """
        self.stimulus.setRepCount(reps)
        self.refstim.setRepCount(reps)

    def count(self):
        return self.stimulus.repCount()
開發者ID:Joel-U,項目名稱:sparkle,代碼行數:104,代碼來源:calibration_runner.py

示例3: SearchRunner

# 需要導入模塊: from sparkle.stim.stimulus_model import StimulusModel [as 別名]
# 或者: from sparkle.stim.stimulus_model.StimulusModel import signal [as 別名]
class SearchRunner(AbstractAcquisitionRunner):
    """Handles the presentation of data where changes are allowed to
    be made to the stimulus while running"""
    def __init__(self, *args):
        self._stimulus = StimulusModel()

        super(SearchRunner, self).__init__(*args)

        self.player = FinitePlayer()
        self.save_data = False
        self.set_name = 'explore_1'

        # stimuli_types = get_stimuli_models()
        # self._explore_stimuli = [x() for x in stimuli_types if x.explore]

        # self.delay = Silence()
        # self._stimulus.insertfComponent(self.delay)

    def stimulus(self):
        """Gets a list of all the stimuli this runner has access to. Order
        of the list matches the index order which stimuli can be set by.

        :returns: (subclasses of) list<:class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>`>
        """
        return self._stimulus

    def set_calibration(self, attenuations, freqs, frange, calname):
        """See :meth:`AbstractAcquisitionRunner<sparkle.run.abstract_acquisition.AbstractAcquisitionRunner.set_calibration>`"""
        self._stimulus.setCalibration(attenuations, freqs, frange)

    def update_reference_voltage(self):
        """See :meth:`AbstractAcquisitionRunner<sparkle.run.abstract_acquisition.AbstractAcquisitionRunner.update_reference_voltage>`"""
        self._stimulus.setReferenceVoltage(self.caldb, self.calv)

    # def set_delay(self, duration):
    #     self.delay.setDuration(duration)

    # def set_stim_by_index(self, index):
    #     """Sets the stimulus to be generated to the one referenced by index

    #     :param index: index number of stimulus to set from this class's internal list of stimuli
    #     :type index: int
    #     """
    #     # remove any current components
    #     self._stimulus.clearComponents()
    #     self._stimulus.insertComponent(self.delay)
    #     self._stimulus.insertComponent(self._explore_stimuli[index], 0, 1)
    #     signal, atten, overload = self._stimulus.signal()
    #     self.player.set_stim(signal, self._stimulus.samplerate(), attenuation=atten)
    #     self.putnotify('over_voltage', (overload,))
    #     return signal, overload

    def reset_stim(self):
        signal, atten, overload = self._stimulus.signal()
        self.player.set_stim(signal, self._stimulus.samplerate(), attenuation=atten)
        self.putnotify('over_voltage', (overload,))
        self.nreps = self._stimulus.repCount()
        self.irep = 0
        return signal, overload

    def set_current_stim_parameter(self, param, val):
        """Sets a parameter on the current stimulus

        :param param: name of the parameter of the stimulus to set
        :type param: str
        :param val: new value to set the parameter to
        """
        component = self._stimulus.component(0,1)
        component.set(param, val)

    def current_signal(self):
        """Signal of the currently set stimulus

        :returns: numpy.ndarray
        """
        return self._stimulus.signal()

    # def stim_names(self):
    #     """The names of the all the stimuli this class can generate, in order

    #     :returns: list<str>
    #     """
    #     stim_names = []
    #     for stim in self._explore_stimuli:
    #         stim_names.append(stim.name)
    #     return stim_names

    def run(self, interval):
        """See :meth:`AbstractAcquisitionRunner<sparkle.run.abstract_acquisition.AbstractAcquisitionRunner.run>`"""
        self._halt = False
        
        # TODO: some error checking to make sure valid paramenters are set
        if self.save_data:
            # initize data set
            self.current_dataset_name = self.set_name
            self.datafile.init_data(self.current_dataset_name, self.aitimes.shape, mode='open')
            self.set_name = increment_title(self.set_name)

        # save the start time and set last tick to expired, so first
        # acquisition loop iteration executes immediately
#.........這裏部分代碼省略.........
開發者ID:boylea,項目名稱:sparkle,代碼行數:103,代碼來源:search_runner.py


注:本文中的sparkle.stim.stimulus_model.StimulusModel.signal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。