本文整理匯總了Python中sparkle.stim.stimulus_model.StimulusModel.setCalibration方法的典型用法代碼示例。如果您正苦於以下問題:Python StimulusModel.setCalibration方法的具體用法?Python StimulusModel.setCalibration怎麽用?Python StimulusModel.setCalibration使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sparkle.stim.stimulus_model.StimulusModel
的用法示例。
在下文中一共展示了StimulusModel.setCalibration方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: TestStimModel
# 需要導入模塊: from sparkle.stim.stimulus_model import StimulusModel [as 別名]
# 或者: from sparkle.stim.stimulus_model.StimulusModel import setCalibration [as 別名]
#.........這裏部分代碼省略.........
self.model.insertComponent(component, 0,0)
ap_model = self.model.autoParams()
ap_model.insertRow(0)
ap_model.toggleSelection(0, component)
values = ['duration', 0.020, 0.004, 0.001]
ap_model.setParamValue(0, parameter=values[0], start=values[1],
stop=values[2], step=values[3])
invalid = self.model.verify()
print 'msg', invalid
assert invalid
def test_verify_with_long_auto_parameter(self):
component = PureTone()
self.model.insertComponent(component, 0,0)
ap_model = self.model.autoParams()
ap_model.insertRow(0)
ap_model.toggleSelection(0, component)
# default value is in ms
values = ['duration', 0.050, 0.200, 0.025]
ap_model.setParamValue(0, parameter=values[0], start=values[1],
stop=values[2], step=values[3])
invalid = self.model.verify(windowSize=0.1)
print 'msg', invalid
assert invalid
def test_calibration_samplerates_change(self):
# get some calibration data
frange = [5000, 100000]
cal_data_file = open_acqdata(sample.calibration_filename(), filemode='r')
calname = cal_data_file.calibration_list()[0]
calibration_vector, calibration_freqs = cal_data_file.get_calibration(calname, reffreq=15000)
assert self.model.impulseResponse is None
self.model.setCalibration(calibration_vector, calibration_freqs, frange)
assert self.model.impulseResponse is not None
component = PureTone()
self.model.insertComponent(component, 0,0)
print self.model._calibration_fs, DEFAULT_SAMPLERATE
assert self.model._calibration_fs == DEFAULT_SAMPLERATE
component = Vocalization()
component.setFile(sample.samplewav())
self.model.insertComponent(component)
assert self.model._calibration_fs == component.samplerate()
self.model.removeComponent(0,0)
assert self.model._calibration_fs == DEFAULT_SAMPLERATE
def add_auto_param(self, model):
# adds an autoparameter to the given model
ptype = 'intensity'
start = 0
step = 1
stop = 3
parameter_model = model.autoParams()
parameter_model.insertRow(0)
# select first component
parameter_model.toggleSelection(0, model.component(0,0))
# set values for autoparams
parameter_model.setParamValue(0, start=start, step=step,
stop=stop, parameter=ptype)
return len(range(start,stop,step)) + 1
def add_vocal_param(self, model):
p = {'parameter' : 'filename',
'names' : [sample.samplewav(), sample.samplewav()],
'selection' : []
}
parameter_model = model.autoParams()
parameter_model.insertRow(0)
parameter_model.overwriteParam(0,p)
# select first component
parameter_model.toggleSelection(0, model.component(0,0))
return parameter_model.numSteps(0)
def stim_with_double_auto(self):
model = StimulusModel()
model.setReferenceVoltage(100, 0.1)
model.setRepCount(7)
component = Vocalization()
component.setFile(sample.samplewav())
model.insertComponent(component, 0,0)
nsteps0 = self.add_vocal_param(model)
nsteps1 = self.add_auto_param(model)
nsteps = nsteps0*nsteps1
return model
示例2: SearchRunner
# 需要導入模塊: from sparkle.stim.stimulus_model import StimulusModel [as 別名]
# 或者: from sparkle.stim.stimulus_model.StimulusModel import setCalibration [as 別名]
class SearchRunner(AbstractAcquisitionRunner):
"""Handles the presentation of data where changes are allowed to
be made to the stimulus while running"""
def __init__(self, *args):
self._stimulus = StimulusModel()
super(SearchRunner, self).__init__(*args)
self.player = FinitePlayer()
self.save_data = False
self.set_name = 'explore_1'
# stimuli_types = get_stimuli_models()
# self._explore_stimuli = [x() for x in stimuli_types if x.explore]
# self.delay = Silence()
# self._stimulus.insertfComponent(self.delay)
def stimulus(self):
"""Gets a list of all the stimuli this runner has access to. Order
of the list matches the index order which stimuli can be set by.
:returns: (subclasses of) list<:class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>`>
"""
return self._stimulus
def set_calibration(self, attenuations, freqs, frange, calname):
"""See :meth:`AbstractAcquisitionRunner<sparkle.run.abstract_acquisition.AbstractAcquisitionRunner.set_calibration>`"""
self._stimulus.setCalibration(attenuations, freqs, frange)
def update_reference_voltage(self):
"""See :meth:`AbstractAcquisitionRunner<sparkle.run.abstract_acquisition.AbstractAcquisitionRunner.update_reference_voltage>`"""
self._stimulus.setReferenceVoltage(self.caldb, self.calv)
# def set_delay(self, duration):
# self.delay.setDuration(duration)
# def set_stim_by_index(self, index):
# """Sets the stimulus to be generated to the one referenced by index
# :param index: index number of stimulus to set from this class's internal list of stimuli
# :type index: int
# """
# # remove any current components
# self._stimulus.clearComponents()
# self._stimulus.insertComponent(self.delay)
# self._stimulus.insertComponent(self._explore_stimuli[index], 0, 1)
# signal, atten, overload = self._stimulus.signal()
# self.player.set_stim(signal, self._stimulus.samplerate(), attenuation=atten)
# self.putnotify('over_voltage', (overload,))
# return signal, overload
def reset_stim(self):
signal, atten, overload = self._stimulus.signal()
self.player.set_stim(signal, self._stimulus.samplerate(), attenuation=atten)
self.putnotify('over_voltage', (overload,))
self.nreps = self._stimulus.repCount()
self.irep = 0
return signal, overload
def set_current_stim_parameter(self, param, val):
"""Sets a parameter on the current stimulus
:param param: name of the parameter of the stimulus to set
:type param: str
:param val: new value to set the parameter to
"""
component = self._stimulus.component(0,1)
component.set(param, val)
def current_signal(self):
"""Signal of the currently set stimulus
:returns: numpy.ndarray
"""
return self._stimulus.signal()
# def stim_names(self):
# """The names of the all the stimuli this class can generate, in order
# :returns: list<str>
# """
# stim_names = []
# for stim in self._explore_stimuli:
# stim_names.append(stim.name)
# return stim_names
def run(self, interval):
"""See :meth:`AbstractAcquisitionRunner<sparkle.run.abstract_acquisition.AbstractAcquisitionRunner.run>`"""
self._halt = False
# TODO: some error checking to make sure valid paramenters are set
if self.save_data:
# initize data set
self.current_dataset_name = self.set_name
self.datafile.init_data(self.current_dataset_name, self.aitimes.shape, mode='open')
self.set_name = increment_title(self.set_name)
# save the start time and set last tick to expired, so first
# acquisition loop iteration executes immediately
#.........這裏部分代碼省略.........