本文整理匯總了Python中sklearn.preprocessing.label.LabelEncoder類的典型用法代碼示例。如果您正苦於以下問題:Python LabelEncoder類的具體用法?Python LabelEncoder怎麽用?Python LabelEncoder使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了LabelEncoder類的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
def __call__(self, labels):
labels = LabelEncoder().fit_transform(labels)
labels = labels.reshape((len(labels), 1))
labels = OneHotEncoder(sparse=False).fit_transform(labels)
if labels.shape[1] == 2:
return labels[:, 0].reshape((len(labels), 1))
else:
return labels
示例2: test_label_encoder
def test_label_encoder():
"""Test LabelEncoder's transform and inverse_transform methods"""
le = LabelEncoder()
le.fit([1, 1, 4, 5, -1, 0])
assert_array_equal(le.classes_, [-1, 0, 1, 4, 5])
assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0])
assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1])
assert_raises(ValueError, le.transform, [0, 6])
示例3: test_label_encoder_empty_array
def test_label_encoder_empty_array(values):
le = LabelEncoder()
le.fit(values)
# test empty transform
transformed = le.transform([])
assert_array_equal(np.array([]), transformed)
# test empty inverse transform
inverse_transformed = le.inverse_transform([])
assert_array_equal(np.array([]), inverse_transformed)
示例4: test_label_encoder_negative_ints
def test_label_encoder_negative_ints():
le = LabelEncoder()
le.fit([1, 1, 4, 5, -1, 0])
assert_array_equal(le.classes_, [-1, 0, 1, 4, 5])
assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]),
[1, 2, 3, 3, 4, 0, 0])
assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]),
[0, 1, 4, 4, 5, -1, -1])
assert_raises(ValueError, le.transform, [0, 6])
示例5: test_label_encoder_fit_transform
def test_label_encoder_fit_transform():
# Test fit_transform
le = LabelEncoder()
ret = le.fit_transform([1, 1, 4, 5, -1, 0])
assert_array_equal(ret, [2, 2, 3, 4, 0, 1])
le = LabelEncoder()
ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"])
assert_array_equal(ret, [1, 1, 2, 0])
示例6: test_label_encoder_errors
def test_label_encoder_errors():
# Check that invalid arguments yield ValueError
le = LabelEncoder()
assert_raises(ValueError, le.transform, [])
assert_raises(ValueError, le.inverse_transform, [])
# Fail on unseen labels
le = LabelEncoder()
le.fit([1, 2, 3, 1, -1])
assert_raises(ValueError, le.inverse_transform, [-1])
示例7: load_dataset
def load_dataset(self):
with open(self.file_name) as f:
dataset = arff.load(f)
if self.label_attribute is None:
self.label_attribute = dataset["attributes"][-1][0]
data = list(numpy.asarray(dataset["data"]).transpose())
labels = None
row = 0
for attribute_name, attribute_type in dataset["attributes"]:
if attribute_name == self.label_attribute:
# Labels found!
labels = data.pop(row)
continue
# Nominal attribute
if isinstance(attribute_type, list):
# Convert None in '?' for next check and to make label_binarize work
for j in range(len(data[row])):
if data[row][j] is None:
data[row][j] = "?"
if numpy.all(data[row] == "?"):
# If no data is present, just remove the row
data.pop(row)
continue
if self.binarize:
data[row] = numpy.asarray(label_binarize(data[row], attribute_type), dtype=numpy.float64)
else:
encoder = LabelEncoder()
encoder.classes_ = attribute_type
if "?" not in encoder.classes_:
encoder.classes_.insert(0, "?")
data[row] = encoder.transform(data[row]).reshape((len(data[row]), 1)).astype(numpy.float64)
else:
# Numeric attributes: check for nan values
data[row] = data[row].astype(numpy.float64)
nans = numpy.isnan(data[row])
if numpy.all(nans):
# If everything is nan, remove the feature
data.pop(row)
continue
if numpy.any(nans):
mean = data[row][numpy.invert(nans)].sum() / numpy.invert(nans).sum()
data[row][nans] = mean
# Reshape to do hstack later
data[row] = data[row].reshape((len(data[row]), 1))
# Go to next row only if we have NOT removed the current one
row += 1
instances = numpy.hstack(tuple(data))
useless_indices = numpy.where(instances.var(axis=0) == 0)
instances = numpy.delete(instances, useless_indices, axis=1)
return instances, labels
示例8: test_label_encoder_string_labels
def test_label_encoder_string_labels():
"""Test LabelEncoder's transform and inverse_transform methods with
non-numeric labels"""
le = LabelEncoder()
le.fit(["paris", "paris", "tokyo", "amsterdam"])
assert_array_equal(le.classes_, ["amsterdam", "paris", "tokyo"])
assert_array_equal(le.transform(["tokyo", "tokyo", "paris"]),
[2, 2, 1])
assert_array_equal(le.inverse_transform([2, 2, 1]),
["tokyo", "tokyo", "paris"])
assert_raises(ValueError, le.transform, ["london"])
示例9: test_label_encoder_errors
def test_label_encoder_errors():
# Check that invalid arguments yield ValueError
le = LabelEncoder()
assert_raises(ValueError, le.transform, [])
assert_raises(ValueError, le.inverse_transform, [])
# Fail on unseen labels
le = LabelEncoder()
le.fit([1, 2, 3, -1, 1])
msg = "contains previously unseen labels"
assert_raise_message(ValueError, msg, le.inverse_transform, [-2])
assert_raise_message(ValueError, msg, le.inverse_transform, [-2, -3, -4])
示例10: normalize_data
def normalize_data(data, target):
data.replace({'None': np.nan}, inplace=True)
types = pd.read_csv('data/datatypes.csv')
for i, row in types.iterrows():
data[row['feature']] = data[row['feature']].astype(row['type'])
data['memFreq'].fillna(0, inplace=True)
data['memtRFC'].fillna(0, inplace=True)
os_le = LabelEncoder()
cpu_full_le = LabelEncoder()
cpu_arch_le = LabelEncoder()
mem_type_le = LabelEncoder()
data['cpuFull'] = cpu_full_le.fit_transform(data['cpuFull'])
data['os'] = os_le.fit_transform(data['os'])
data['cpuArch'] = cpu_arch_le.fit_transform(data['cpuArch'])
data['memType'] = mem_type_le.fit_transform(data['memType'])
# drop single value columns
data = data.drop(['cacheL3IsShared', 'BMI', 'CLF_._Cache_Line_Flush', 'CMOV_._Conditionnal_Move_Inst.',
'CX8_._CMPXCHG8B', 'FXSR.FXSAVE.FXRSTOR', 'IA.64_Technology',
'MMX_Technology', 'SSE', 'SSE2', 'SSE4a', 'SSE5', 'TBM', 'X3DNow_Pro_Technology'], axis=1)
data['C0'] = np.log(data['n'] * data['m'] * data['k'])
data = data.drop(['m', 'n', 'k'], axis=1)
return data, target, {
'os': os_le,
'cpuFull': cpu_full_le,
'cpuArch': cpu_arch_le,
'memType': mem_type_le,
}
示例11: test_label_encoder
def test_label_encoder(values, classes, unknown):
# Test LabelEncoder's transform, fit_transform and
# inverse_transform methods
le = LabelEncoder()
le.fit(values)
assert_array_equal(le.classes_, classes)
assert_array_equal(le.transform(values), [1, 0, 2, 0, 2])
assert_array_equal(le.inverse_transform([1, 0, 2, 0, 2]), values)
le = LabelEncoder()
ret = le.fit_transform(values)
assert_array_equal(ret, [1, 0, 2, 0, 2])
with pytest.raises(ValueError, match="unseen labels"):
le.transform(unknown)
示例12: test_label_encoder
def test_label_encoder():
# Test LabelEncoder's transform and inverse_transform methods
le = LabelEncoder()
le.fit([1, 1, 4, 5, -1, 0])
assert_array_equal(le.classes_, [-1, 0, 1, 4, 5])
assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0])
assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1])
assert_raises(ValueError, le.transform, [0, 6])
le.fit(["apple", "orange"])
msg = "bad input shape"
assert_raise_message(ValueError, msg, le.transform, "apple")
示例13: test_label_encoder_str_bad_shape
def test_label_encoder_str_bad_shape(dtype):
le = LabelEncoder()
le.fit(np.array(["apple", "orange"], dtype=dtype))
msg = "bad input shape"
assert_raise_message(ValueError, msg, le.transform, "apple")
示例14: design_matrix
def design_matrix(sample_labels, interaction_indices=None):
"""
Parameters
---------
sample_labels:
a numpy matrix, for each sample a vector with the conditions
which we would like to model.
cols represent the type of conditions we want to model,
row represent a combination of conditions that are represented by the row-variable.
if we have a 2x3 design we build this matrix:
[[0,0],
[0,1],
[0,2],
[1,0],
[1,1],
[1,2]]
Returns
-------
X: the design matrix.
factor_labels: the labels of the design-matrix columns
factor_num : number of factors for each condition
"""
factor_num = []
n_factors = 0
for i in range(sample_labels.shape[1]):
unique_labels = np.unique(sample_labels[:,i])
if len(unique_labels) == 1:
label_factors = 0
else:
label_factors = len(unique_labels)
n_factors+=label_factors
factor_num.append(label_factors)
n_interactions = 0
if interaction_indices != None:
interaction_factors = np.array(factor_num)[[interaction_indices]]
n_interactions = np.prod(interaction_factors)
Xint = np.zeros((sample_labels.shape[0], n_interactions))
X = np.zeros((sample_labels.shape[0], n_factors))
lb = LabelEncoder()
factor_labels = []
offset = 0
for i, factor in enumerate(factor_num):
if factor == 0:
continue
index = lb.fit_transform(sample_labels.T[i])
for j in range(sample_labels.shape[0]):
X[j,index[j]+offset] = 1
factor_labels.append(lb.classes_)
offset += factor
if interaction_indices != None:
interaction_product = [np.arange(v).tolist() for v in interaction_factors]
interaction_gen = cartesian(interaction_product)
# This is buggy!!
Xint = np.zeros((sample_labels.shape[0], n_interactions))
offset = interaction_indices[0] * np.sum(factor_num[:interaction_indices[0]])
offset = np.int(offset)
for i, int_indices in enumerate(interaction_gen):
index1 = offset + int_indices[0]
index2 = offset + int_indices[1] + factor_num[interaction_indices[0]]
Xint[:,i] = X[:,index1] * X[:,index2]
factor1 = interaction_indices[0]
factor2 = interaction_indices[1]
new_label = factor_labels[factor1][int_indices[0]] + "_" + \
factor_labels[factor2][int_indices[1]]
factor_labels.append(new_label)
X = np.hstack((X, Xint))
return X, np.hstack(factor_labels), factor_num