當前位置: 首頁>>代碼示例>>Python>>正文


Python PassiveAggressiveRegressor.predict方法代碼示例

本文整理匯總了Python中sklearn.linear_model.PassiveAggressiveRegressor.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python PassiveAggressiveRegressor.predict方法的具體用法?Python PassiveAggressiveRegressor.predict怎麽用?Python PassiveAggressiveRegressor.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model.PassiveAggressiveRegressor的用法示例。


在下文中一共展示了PassiveAggressiveRegressor.predict方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fancy_text_model

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
def fancy_text_model(x_train, y_train, x_test, x_valid, cache_name, use_cache=False):
    if use_cache:
        fhand = open(cache_name, 'r')
        data_dict = pickle.load(fhand)
        return data_dict['test_pred'], data_dict['valid_pred']
    np.random.seed(seed=123)
    model = PassiveAggressiveRegressor(n_iter=100, C=1, shuffle=True, random_state=123)
    model.fit(x_train, y_train)
    test_pred = model.predict(x_test)
    valid_pred = model.predict(x_valid)
    data_dict = {'test_pred': test_pred, 'valid_pred': valid_pred}
    fhand = open(cache_name, 'w')
    pickle.dump(data_dict, fhand)
    fhand.close()
    return test_pred, valid_pred
開發者ID:JakeMick,項目名稱:kaggle-bulldozer,代碼行數:17,代碼來源:model.py

示例2: test_regressor_partial_fit

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
def test_regressor_partial_fit():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
            reg = PassiveAggressiveRegressor(C=1.0,
                                             fit_intercept=True,
                                             random_state=0)
            for t in range(50):
                reg.partial_fit(data, y_bin)
            pred = reg.predict(data)
            assert_less(np.mean((pred - y_bin) ** 2), 1.7)
開發者ID:Big-Data,項目名稱:scikit-learn,代碼行數:14,代碼來源:test_passive_aggressive.py

示例3: test_regressor_mse

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
def test_regressor_mse():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
        for fit_intercept in (True, False):
            reg = PassiveAggressiveRegressor(C=1.0, n_iter=50,
                                             fit_intercept=fit_intercept,
                                             random_state=0)
            reg.fit(data, y_bin)
            pred = reg.predict(data)
            assert_less(np.mean((pred - y_bin) ** 2), 1.7)
開發者ID:Big-Data,項目名稱:scikit-learn,代碼行數:14,代碼來源:test_passive_aggressive.py

示例4: test_regressor_partial_fit

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
def test_regressor_partial_fit():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
        for average in (False, True):
            reg = PassiveAggressiveRegressor(
                C=1.0, fit_intercept=True, random_state=0,
                average=average, max_iter=100)
            for t in range(50):
                reg.partial_fit(data, y_bin)
            pred = reg.predict(data)
            assert_less(np.mean((pred - y_bin) ** 2), 1.7)
            if average:
                assert hasattr(reg, 'average_coef_')
                assert hasattr(reg, 'average_intercept_')
                assert hasattr(reg, 'standard_intercept_')
                assert hasattr(reg, 'standard_coef_')
開發者ID:allefpablo,項目名稱:scikit-learn,代碼行數:20,代碼來源:test_passive_aggressive.py

示例5: test_regressor_mse

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
def test_regressor_mse():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
        for fit_intercept in (True, False):
            for average in (False, True):
                reg = PassiveAggressiveRegressor(
                    C=1.0, fit_intercept=fit_intercept,
                    random_state=0, average=average, max_iter=5)
                reg.fit(data, y_bin)
                pred = reg.predict(data)
                assert_less(np.mean((pred - y_bin) ** 2), 1.7)
                if average:
                    assert_true(hasattr(reg, 'average_coef_'))
                    assert_true(hasattr(reg, 'average_intercept_'))
                    assert_true(hasattr(reg, 'standard_intercept_'))
                    assert_true(hasattr(reg, 'standard_coef_'))
開發者ID:AlexisMignon,項目名稱:scikit-learn,代碼行數:20,代碼來源:test_passive_aggressive.py

示例6: PassiveAggressiveRegressor

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
quesparse = quevectorizer.fit_transform(question)
topsparse = topvectorizer.fit_transform(topics)
cfscaled = cfscaler.transform(contextfollowers)
tfscaled = tfscaler.transform(topicsfollowers)

tquesparse = quevectorizer.transform(tquestion)
ttopsparse = topvectorizer.transform(ttopics)
tcfscaled = cfscaler.transform(tcontextfollowers)
ttfscaled = tfscaler.transform(ttopicsfollowers)



par = PassiveAggressiveRegressor()
par.fit(topsparse,y)
pred = par.predict(ttopsparse)
pred[pred<0] = 0


temp = pl.figure("train y")
temp = pl.subplot(2,1,1)
temp = pl.hist(y,1000)
temp = pl.subplot(2,1,2)
yy = y.copy()
yy[yy==0] = 1
temp = pl.hist(np.log10(yy),1000)

temp = pl.figure("test y")
temp = pl.subplot(4,1,1)
temp = pl.hist(pred,1000)
temp = pl.subplot(4,1,2)
開發者ID:syllogismos,項目名稱:QuoraMLCodeSprint2013,代碼行數:32,代碼來源:views.py

示例7: ShuffleSplit

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
# Assemble prediction variables
X_train = X_train_pre.loc[:, important_features_top_100]
X_test = X_test_pre.loc[:, important_features_top_100]

for gene in prioritized_genes:
    y_train = train_ess.ix[:, gene]

    y_preds_test = []
    y_preds_scores = []

    # Training
    cv = ShuffleSplit(len(y_train), n_iter=5)
    for train_i, test_i in cv:
        clf = PassiveAggressiveRegressor(epsilon=0.01, n_iter=7).fit(X_train.ix[train_i, :], y_train[train_i])
        y_preds_scores.append(spearm_cor_func(clf.predict(X_train.ix[test_i, :]), y_train[test_i]))
        y_preds_test.append(clf.predict(X_test))

    y_preds_scores = Series(y_preds_scores)
    y_preds_test = DataFrame(y_preds_test)

    # Predict
    y_pred = np.mean(y_preds_test[y_preds_scores.notnull()], axis=0).values

    print gene, X_train.shape

    # Store results
    predictions.ix[gene] = y_pred

filename_gct = save_gct_data(predictions, submission_filename_prefix)
print '[DONE]: Saved to file ' + filename_gct
開發者ID:EmanuelGoncalves,項目名稱:dream,代碼行數:32,代碼來源:leader_sc3.py

示例8: VarianceThreshold

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
# Filter by coeficient variation
var_thres = VarianceThreshold(best_var).fit(X_train_pre)
X_train_pre = var_thres.transform(X_train_pre)
X_test_pre = var_thres.transform(X_test_pre)

for gene in genes:
    # Assemble prediction variables
    X_train = X_train_pre
    y_train = train_ess.ix[:, gene]
    X_test = X_test_pre

    # Feature selection
    fs = SelectKBest(f_regression, k=best_k).fit(X_train, y_train)
    X_train = fs.transform(X_train)
    X_test = fs.transform(X_test)

    # Estimation
    clf = PassiveAggressiveRegressor(epsilon=best_epsilon, n_iter=best_n_iter).fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    # Store results
    predictions.ix[gene] = y_pred

    print gene

filename = save_gct_data(predictions, submission_filename_prefix)
print '[DONE]: Saved to file ' + filename

submit_solution(filename, filename.split('/')[1], ev_code_sc1)
print '[SUBMITED]'
開發者ID:EmanuelGoncalves,項目名稱:dream,代碼行數:32,代碼來源:leader_sc1.py

示例9: ElasticNet

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]

# Elastic Net
print 'elastic net'
enr = ElasticNet()
#enr.fit(x[:, np.newaxis], y)
#enr_sts_scores = enr.predict(xt[:, np.newaxis])
enr.fit(x, y)
enr_sts_scores = enr.predict(xt)


# Passive Aggressive Regression
print 'passive aggressive'
par = PassiveAggressiveRegressor()
par.fit(x, y)
par_sts_scores = par.predict(xt)
#par.fit(x[:, np.newaxis], y)
#par_sts_scores = par.predict(xt[:, np.newaxis])

# RANSAC Regression
print 'ransac'
ransac = RANSACRegressor()
#ransac.fit(x[:, np.newaxis], y)
#ransac_sts_scores = ransac.predict(xt[:, np.newaxis])
ransac.fit(x, y)
ransac_sts_scores = ransac.predict(xt)


# Logistic Regression
print 'logistic'
lgr = LogisticRegression()
開發者ID:BinbinBian,項目名稱:USAAR-SemEval-2015,代碼行數:32,代碼來源:carolling-old.py

示例10: main

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import predict [as 別名]
def main():
    X, y, coef = make_regression(1000, 200, 10, 1, noise=0.05, coef=True,
                                 random_state=42)

    # X = np.column_stack((X, np.ones(X.shape[0])))

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
                                                        random_state=42)

    # sca = StandardScaler()
    # sca.fit(X_train)
    # X_train = sca.transform(X_train)
    # X_test = sca.transform(X_test)

    # print X.shape
    # print y.shape
    # print coef.shape

    param_grid = {
        "C": [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10,
              100, 1000],
        "epsilon": [0.0001, 0.001, 0.01, 0.1]}

    param_grid_kern = {
        "C": [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10,
              100, 1000],
        "epsilon": [0.0001, 0.001, 0.01, 0.1],
        "gamma": [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]}
    # "loss": ["pa", "pai", "paii"]}}

    my_pa = PARegressor(loss="paii", C=1, epsilon=0.001, n_iter=1,
                        fit_intercept=False)
    #
    # search = GridSearchCV(my_pa, param_grid,
    #                       scoring='mean_absolute_error', n_jobs=8, iid=True, refit=True, cv=5,
    #                       verbose=1)
    # search.fit(X_train, y_train)
    # print search.best_params_

    my_pa.fit(X_train, y_train)
    print my_pa.coef_

    # y_preds = search.predict(X_test)
    y_preds = my_pa.predict(X_test)

    mae_my_pa = mean_absolute_error(y_test, y_preds)
    print "My PA MAE = %2.4f" % mae_my_pa

    my_kpa_linear = KernelPARegressor(kernel="linear", loss="paii", C=1, epsilon=0.001, n_iter=1, fit_intercept=False)
    my_kpa_linear.fit(X_train, y_train)
    print "alphas", len(my_kpa_linear.alphas_), my_kpa_linear.alphas_
    y_preds = my_kpa_linear.predict(X_test)
    mae_kpa_linear = mean_absolute_error(y_test, y_preds)
    print "My KPA linear MAE = %2.4f" % mae_kpa_linear

    my_kpa_rbf = KernelPARegressor(kernel="rbf", loss="paii", gamma=0.001, C=1, epsilon=0.001, n_iter=1, fit_intercept=False)
    # search = GridSearchCV(my_kpa_rbf, param_grid_kern,
    #                       scoring='mean_absolute_error', n_jobs=8, iid=True, refit=True, cv=5,
    #                       verbose=1)
    # search.fit(X_train, y_train)

    my_kpa_rbf.fit(X_train, y_train)
    print "alphas", len(my_kpa_rbf.alphas_), my_kpa_rbf.alphas_
    print "support", len(my_kpa_rbf.support_)
    # print "alphas", len(search.best_estimator_.alphas_)  # , my_kpa_rbf.alphas_
    # print "support", len(search.best_estimator_.support_)
    # print search.best_params_
    y_preds = my_kpa_rbf.predict(X_test)
    # y_preds = search.predict(X_test)
    mae_my_kpa = mean_absolute_error(y_test, y_preds)
    print "My Kernel PA MAE = %2.4f" % mae_my_kpa

    # print search.best_estimator_
    # print np.corrcoef(search.best_estimator_.coef_, coef)

    # param_grid = {
    # "C": [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10,
    #           100, 1000, 10000],
    #     "epsilon": [0.0001, 0.001, 0.01, 0.1],
    #     # "loss": ["epsilon_insensitive", "squared_epsilon_insensitive"]}
    #     "loss": ["squared_epsilon_insensitive"]}


    # search = GridSearchCV(PassiveAggressiveRegressor(fit_intercept=True),
    # param_grid, scoring='mean_absolute_error', n_jobs=8, iid=True,
    # refit=True, cv=5, verbose=1)
    # search.fit(X_train, y_train)

    sk_pa = PassiveAggressiveRegressor(loss="squared_epsilon_insensitive", C=1,
                                       epsilon=0.001, n_iter=1,
                                       fit_intercept=False,
                                       warm_start=True)
    for i in xrange(X_train.shape[0]):
        # for x_i, y_i in zip(X_train, y_train):
        x = np.array(X_train[i], ndmin=2)
        y = np.array(y_train[i], ndmin=1)
        # print x.shape
        # print y
        sk_pa.partial_fit(x, y)

#.........這裏部分代碼省略.........
開發者ID:jsouza,項目名稱:pamtl,代碼行數:103,代碼來源:pa_regression.py


注:本文中的sklearn.linear_model.PassiveAggressiveRegressor.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。