當前位置: 首頁>>代碼示例>>Python>>正文


Python PassiveAggressiveRegressor.partial_fit方法代碼示例

本文整理匯總了Python中sklearn.linear_model.PassiveAggressiveRegressor.partial_fit方法的典型用法代碼示例。如果您正苦於以下問題:Python PassiveAggressiveRegressor.partial_fit方法的具體用法?Python PassiveAggressiveRegressor.partial_fit怎麽用?Python PassiveAggressiveRegressor.partial_fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model.PassiveAggressiveRegressor的用法示例。


在下文中一共展示了PassiveAggressiveRegressor.partial_fit方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_regressor_partial_fit

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import partial_fit [as 別名]
def test_regressor_partial_fit():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
            reg = PassiveAggressiveRegressor(C=1.0,
                                             fit_intercept=True,
                                             random_state=0)
            for t in range(50):
                reg.partial_fit(data, y_bin)
            pred = reg.predict(data)
            assert_less(np.mean((pred - y_bin) ** 2), 1.7)
開發者ID:Big-Data,項目名稱:scikit-learn,代碼行數:14,代碼來源:test_passive_aggressive.py

示例2: test_regressor_partial_fit

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import partial_fit [as 別名]
def test_regressor_partial_fit():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
        for average in (False, True):
            reg = PassiveAggressiveRegressor(
                C=1.0, fit_intercept=True, random_state=0,
                average=average, max_iter=100)
            for t in range(50):
                reg.partial_fit(data, y_bin)
            pred = reg.predict(data)
            assert_less(np.mean((pred - y_bin) ** 2), 1.7)
            if average:
                assert hasattr(reg, 'average_coef_')
                assert hasattr(reg, 'average_intercept_')
                assert hasattr(reg, 'standard_intercept_')
                assert hasattr(reg, 'standard_coef_')
開發者ID:allefpablo,項目名稱:scikit-learn,代碼行數:20,代碼來源:test_passive_aggressive.py

示例3: refit_from_scratch

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import partial_fit [as 別名]
    def refit_from_scratch(self):
        temp_model = PassiveAggressiveRegressor()
        temp_enc   = CountVectorizer()
        X = []   # binary matrix the presence of tags
        Z = []   # additional numerical data
        Y = []   # target (to predict) values
        db_size = self.db.size()
        for data in self.db.yield_all():
            feedback = data["feedback"]
            tags     = data[  "tags"  ]
            if feedback and tags:
                Y.append(   feedback   )
                X.append(" ".join(tags))
                Z.append(self.fmt_numerical(data))

        X = temp_enc.fit_transform(X)
        X = hstack((X, coo_matrix(Z)))
        self.allX = X
        for i in range(X.shape[0]):
            temp_model.partial_fit(X.getrow(i), [Y[0]])
        self.model = temp_model
        self.enc = temp_enc
開發者ID:Payback80,項目名稱:porn_sieve,代碼行數:24,代碼來源:predict.py

示例4: main

# 需要導入模塊: from sklearn.linear_model import PassiveAggressiveRegressor [as 別名]
# 或者: from sklearn.linear_model.PassiveAggressiveRegressor import partial_fit [as 別名]
def main():
    X, y, coef = make_regression(1000, 200, 10, 1, noise=0.05, coef=True,
                                 random_state=42)

    # X = np.column_stack((X, np.ones(X.shape[0])))

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
                                                        random_state=42)

    # sca = StandardScaler()
    # sca.fit(X_train)
    # X_train = sca.transform(X_train)
    # X_test = sca.transform(X_test)

    # print X.shape
    # print y.shape
    # print coef.shape

    param_grid = {
        "C": [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10,
              100, 1000],
        "epsilon": [0.0001, 0.001, 0.01, 0.1]}

    param_grid_kern = {
        "C": [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10,
              100, 1000],
        "epsilon": [0.0001, 0.001, 0.01, 0.1],
        "gamma": [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]}
    # "loss": ["pa", "pai", "paii"]}}

    my_pa = PARegressor(loss="paii", C=1, epsilon=0.001, n_iter=1,
                        fit_intercept=False)
    #
    # search = GridSearchCV(my_pa, param_grid,
    #                       scoring='mean_absolute_error', n_jobs=8, iid=True, refit=True, cv=5,
    #                       verbose=1)
    # search.fit(X_train, y_train)
    # print search.best_params_

    my_pa.fit(X_train, y_train)
    print my_pa.coef_

    # y_preds = search.predict(X_test)
    y_preds = my_pa.predict(X_test)

    mae_my_pa = mean_absolute_error(y_test, y_preds)
    print "My PA MAE = %2.4f" % mae_my_pa

    my_kpa_linear = KernelPARegressor(kernel="linear", loss="paii", C=1, epsilon=0.001, n_iter=1, fit_intercept=False)
    my_kpa_linear.fit(X_train, y_train)
    print "alphas", len(my_kpa_linear.alphas_), my_kpa_linear.alphas_
    y_preds = my_kpa_linear.predict(X_test)
    mae_kpa_linear = mean_absolute_error(y_test, y_preds)
    print "My KPA linear MAE = %2.4f" % mae_kpa_linear

    my_kpa_rbf = KernelPARegressor(kernel="rbf", loss="paii", gamma=0.001, C=1, epsilon=0.001, n_iter=1, fit_intercept=False)
    # search = GridSearchCV(my_kpa_rbf, param_grid_kern,
    #                       scoring='mean_absolute_error', n_jobs=8, iid=True, refit=True, cv=5,
    #                       verbose=1)
    # search.fit(X_train, y_train)

    my_kpa_rbf.fit(X_train, y_train)
    print "alphas", len(my_kpa_rbf.alphas_), my_kpa_rbf.alphas_
    print "support", len(my_kpa_rbf.support_)
    # print "alphas", len(search.best_estimator_.alphas_)  # , my_kpa_rbf.alphas_
    # print "support", len(search.best_estimator_.support_)
    # print search.best_params_
    y_preds = my_kpa_rbf.predict(X_test)
    # y_preds = search.predict(X_test)
    mae_my_kpa = mean_absolute_error(y_test, y_preds)
    print "My Kernel PA MAE = %2.4f" % mae_my_kpa

    # print search.best_estimator_
    # print np.corrcoef(search.best_estimator_.coef_, coef)

    # param_grid = {
    # "C": [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10,
    #           100, 1000, 10000],
    #     "epsilon": [0.0001, 0.001, 0.01, 0.1],
    #     # "loss": ["epsilon_insensitive", "squared_epsilon_insensitive"]}
    #     "loss": ["squared_epsilon_insensitive"]}


    # search = GridSearchCV(PassiveAggressiveRegressor(fit_intercept=True),
    # param_grid, scoring='mean_absolute_error', n_jobs=8, iid=True,
    # refit=True, cv=5, verbose=1)
    # search.fit(X_train, y_train)

    sk_pa = PassiveAggressiveRegressor(loss="squared_epsilon_insensitive", C=1,
                                       epsilon=0.001, n_iter=1,
                                       fit_intercept=False,
                                       warm_start=True)
    for i in xrange(X_train.shape[0]):
        # for x_i, y_i in zip(X_train, y_train):
        x = np.array(X_train[i], ndmin=2)
        y = np.array(y_train[i], ndmin=1)
        # print x.shape
        # print y
        sk_pa.partial_fit(x, y)

#.........這裏部分代碼省略.........
開發者ID:jsouza,項目名稱:pamtl,代碼行數:103,代碼來源:pa_regression.py


注:本文中的sklearn.linear_model.PassiveAggressiveRegressor.partial_fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。