當前位置: 首頁>>代碼示例>>Python>>正文


Python BayesianRidge.score方法代碼示例

本文整理匯總了Python中sklearn.linear_model.BayesianRidge.score方法的典型用法代碼示例。如果您正苦於以下問題:Python BayesianRidge.score方法的具體用法?Python BayesianRidge.score怎麽用?Python BayesianRidge.score使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model.BayesianRidge的用法示例。


在下文中一共展示了BayesianRidge.score方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: int

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import score [as 別名]
                                          test_size=test_size, random_state=0)
    

#    k = int(0.5 * n_features)
#    print("-----------------------------------------------")
#    print("Perform chi2 feature selection k=", k)   
#    print("-----------------------------------------------")
#    X_train, X_test = selectFeatures(X_train, X_test, y_train, k)

    print("-----------------------------------------------")
    print("SVM Classification of training set")   
    print("-----------------------------------------------")
    class_weight = {0:5}
    print("Class weight=", class_weight)
    clf = BayesianRidge(compute_score=True).fit(X_train, y_train)
    print("Test svm.SVC score=", clf.score(X_test, y_test))
    print("Train svm.SVC score=", clf.score(X_train, y_train))
    
    print("-----------------------------------------------")
    print("Metrics on TEST SET")   
    print("-----------------------------------------------")    
    y_pred = clf.predict(X_test)
    
    print(metrics.classification_report(y_test, y_pred, target_names=label_names))
    print(metrics.confusion_matrix(y_test, y_pred))       
    
    print("-----------------------------------------------")
    print("Metrics on TRAIN SET")   
    print("-----------------------------------------------")    
    y_predTrain = clf.predict(X_train)
    
開發者ID:dumoulma,項目名稱:fic-prototype,代碼行數:32,代碼來源:MeasureOthers.py

示例2: main

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import score [as 別名]
def main():
    usage = 'usage: %prog [options] <repr_hdf5> <data_hdf5> <target_index>'
    parser = OptionParser(usage)
    parser.add_option('-a', dest='add_only', default=False, action='store_true', help='Use additional features only; no sequence features')
    parser.add_option('-b', dest='balance', default=False, action='store_true', help='Downsample the negative set to balance [Default: %default]')
    parser.add_option('-o', dest='out_dir', default='postmodel', help='Output directory [Default: %default]')
    parser.add_option('-r', dest='regression', default=False, action='store_true', help='Regression mode [Default: %default]')
    parser.add_option('-s', dest='seq_only', default=False, action='store_true', help='Use sequence features only; no additional features [Default: %default]')
    parser.add_option('--sample', dest='sample', default=None, type='int', help='Sample from the training set [Default: %default]')
    parser.add_option('-t', dest='target_hdf5', default=None, help='Extract targets from this HDF5 rather than data_hdf5 argument')
    parser.add_option('-x', dest='regex_add', default=None, help='Filter additional features using a comma-separated list of regular expressions')
    (options,args) = parser.parse_args()

    if len(args) != 3:
        parser.error('Must provide full data HDF5, representation HDF5, and target index or filename')
    else:
        repr_hdf5_file = args[0]
        data_hdf5_file = args[1]
        target_i = args[2]

    if not os.path.isdir(options.out_dir):
        os.mkdir(options.out_dir)

    random.seed(1)

    #######################################################
    # preprocessing
    #######################################################

    # load training targets
    data_hdf5_in = h5py.File(data_hdf5_file, 'r')
    if options.target_hdf5:
        target_hdf5_in = h5py.File(options.target_hdf5, 'r')
    else:
        target_hdf5_in = data_hdf5_in
    train_y = np.array(target_hdf5_in['train_out'])[:,target_i]
    test_y = np.array(target_hdf5_in['test_out'])[:,target_i]

    # load training representations
    if not options.add_only:
        repr_hdf5_in = h5py.File(repr_hdf5_file, 'r')
        train_x = np.array(repr_hdf5_in['train_repr'])
        test_x = np.array(repr_hdf5_in['test_repr'])
        repr_hdf5_in.close()

    if options.seq_only:
        add_labels = []

    else:
        # load additional features
        train_a = np.array(data_hdf5_in['train_add'])
        test_a = np.array(data_hdf5_in['test_add'])
        add_labels = np.array(data_hdf5_in['add_labels'])

        if options.regex_add:
            fi = filter_regex(options.regex_add, add_labels)
            train_a, test_a, add_labels = train_a[:,fi], test_a[:,fi], add_labels[fi]

        # append additional features
        if options.add_only:
            add_i = 0
            train_x, test_x = train_a, test_a
        else:
            add_i = train_x.shape[1]
            train_x = np.concatenate((train_x,train_a), axis=1)
            test_x = np.concatenate((test_x,test_a), axis=1)

    data_hdf5_in.close()
    if options.target_hdf5:
        target_hdf5_in.close()

    # balance
    if options.balance:
        train_x, train_y = balance(train_x, train_y)

    # sample
    if options.sample is not None and options.sample < train_x.shape[0]:
        sample_indexes = random.sample(range(train_x.shape[0]), options.sample)
        train_x = train_x[sample_indexes]
        train_y = train_y[sample_indexes]


    #######################################################
    # model
    #######################################################
    if options.regression:
        # fit
        model = BayesianRidge(fit_intercept=True)
        model.fit(train_x, train_y)

        # accuracy
        acc_out = open('%s/r2.txt' % options.out_dir, 'w')
        print >> acc_out, model.score(test_x, test_y)
        acc_out.close()

        test_preds = model.predict(test_x)

        # plot a sample of predictions versus actual
        plt.figure()
        sns.jointplot(test_preds[:5000], test_y[:5000], joint_kws={'alpha':0.3})
#.........這裏部分代碼省略.........
開發者ID:HFpostdoc,項目名稱:Basset,代碼行數:103,代碼來源:basset_postmodel.py

示例3: main

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import score [as 別名]
def main():
    usage = "usage: %prog [options] <model_file>"
    parser = OptionParser(usage)
    parser.add_option(
        "-c",
        dest="center_dist",
        default=10,
        type="int",
        help="Distance between the motifs and sequence center [Default: %default]",
    )
    parser.add_option(
        "-d", dest="model_hdf5_file", default=None, help="Pre-computed model output as HDF5 [Default: %default]"
    )
    parser.add_option(
        "-g", dest="cuda", default=False, action="store_true", help="Run on the GPGPU [Default: %default]"
    )
    parser.add_option("-l", dest="seq_length", default=600, type="int", help="Sequence length [Default: %default]")
    parser.add_option("-o", dest="out_dir", default="heat", help="Output directory [Default: %default]")
    parser.add_option(
        "-t",
        dest="targets",
        default="0",
        help="Comma-separated list of target indexes to plot (or -1 for all) [Default: %default]",
    )
    (options, args) = parser.parse_args()

    if len(args) != 1:
        parser.error("Must provide Basset model file")
    else:
        model_file = args[0]

    out_targets = [int(ti) for ti in options.targets.split(",")]

    if not os.path.isdir(options.out_dir):
        os.mkdir(options.out_dir)

    random.seed(1)

    # torch options
    cuda_str = ""
    if options.cuda:
        cuda_str = "-cuda"

    #################################################################
    # place filter consensus motifs
    #################################################################
    # determine filter consensus motifs
    filter_consensus = get_filter_consensus(model_file, options.out_dir, cuda_str)

    seqs_1hot = []
    # num_filters = len(filter_consensus)
    num_filters = 20
    filter_len = filter_consensus[0].shape[1]

    # position the motifs
    left_i = options.seq_length / 2 - options.center_dist - filter_len
    right_i = options.seq_length / 2 + options.center_dist

    ns_1hot = np.zeros((4, options.seq_length)) + 0.25
    # ns_1hot = np.zeros((4,options.seq_length))
    # for i in range(options.seq_length):
    #     nt_i = random.randint(0,3)
    #     ns_1hot[nt_i,i] = 1

    for i in range(num_filters):
        for j in range(num_filters):
            # copy the sequence of N's
            motifs_seq = np.copy(ns_1hot)

            # write them into the one hot coding
            motifs_seq[:, left_i : left_i + filter_len] = filter_consensus[i]
            motifs_seq[:, right_i : right_i + filter_len] = filter_consensus[j]

            # save
            seqs_1hot.append(motifs_seq)

    # make a full array
    seqs_1hot = np.array(seqs_1hot)

    # reshape for spatial
    seqs_1hot = seqs_1hot.reshape((seqs_1hot.shape[0], 4, 1, options.seq_length))

    #################################################################
    # place filter consensus motifs
    #################################################################
    # save to HDF5
    seqs_file = "%s/motif_seqs.h5" % options.out_dir
    h5f = h5py.File(seqs_file, "w")
    h5f.create_dataset("test_in", data=seqs_1hot)
    h5f.close()

    # predict scores
    scores_file = "%s/motif_seqs_scores.h5" % options.out_dir
    torch_cmd = "th basset_place2_predict.lua %s %s %s %s" % (cuda_str, model_file, seqs_file, scores_file)
    subprocess.call(torch_cmd, shell=True)

    # load in scores
    hdf5_in = h5py.File(scores_file, "r")
    motif_seq_scores = np.array(hdf5_in["scores"])
    hdf5_in.close()
#.........這裏部分代碼省略.........
開發者ID:hammer,項目名稱:Basset,代碼行數:103,代碼來源:basset_place2.py

示例4: time

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import score [as 別名]
#            random_state=0))
t1 = time()
sc.fit(X_train, y_train)
sc_time = time() -t1
computed_coefs = sc.inverse_transform()
computed_coefs = np.reshape(computed_coefs, [size, size, size])
score = sc.score(X_test, y_test)


###############################################################################
# Compute the results for simple BayesianRidge
t1 = time()
clf.fit(X_train, y_train)
bayes_time = time() - t1
bayes_coefs = clf.coef_
bayes_score = clf.score(X_test, y_test)
bayes_coefs = bayes_coefs.reshape((size, size, size))


###############################################################################
# Plot the results

pl.close('all')
pl.figure()
pl.title('Scores of the supervised clustering')
pl.subplot(2, 1, 1)
pl.plot(np.arange(len(sc.scores_)), sc.scores_)
pl.xlabel('score')
pl.ylabel('iteration')
pl.title('Score of the best parcellation of each iteration')
pl.subplot(2, 1, 2)
開發者ID:JeanKossaifi,項目名稱:tutorial,代碼行數:33,代碼來源:simulated_example.py

示例5: prediction_BayesianRidge

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import score [as 別名]
def prediction_BayesianRidge (X_train, Y_train, X_test, Y_test,normalize):

    # Print shapes of the training and testing data sets
    #print ("Shapes of the training and testing data sets")
    #print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)
    #Create our regression object

    lreg = BayesianRidge(normalize=normalize)

    #do a linear regression, except only on the training
    lreg.fit(X_train,Y_train)

    #print("The estimated intercept coefficient is %.2f " %lreg.intercept_)
    #print("The number of coefficients used was %d " % len(lreg.coef_))



    # Set a DataFrame from the Facts
    coeff_df = DataFrame(X_train.columns)
    coeff_df.columns = ["Fact"]


    # Set a new column lining up the coefficients from the linear regression
    coeff_df["Coefficient"] = pd.Series(lreg.coef_)


    # Show
    #coeff_df

    #highest correlation between a fact and fraction votes
    #print ("Highest correlation fact: %s is %.9f" % (cf_dict.loc[coeff_df.iloc[coeff_df["Coefficient"].idxmax()]["Fact"],"description"], coeff_df.iloc[coeff_df["Coefficient"].idxmax()]["Coefficient"]) )

    #sns_plot = sns.jointplot(coeff_df.iloc[coeff_df["Coefficient"].idxmax()]["Fact"],"Fraction Votes",pd.merge(X_test,pd.DataFrame(Y_test), right_index=True, left_index=True),kind="scatter")


    #Predictions on training and testing sets
    pred_train = lreg.predict(X_train)
    pred_test = lreg.predict(X_test)

    # The mean square error
    #print("MSE with X_train and Y_train: %.6f"  % np.mean((Y_train - pred_train) ** 2))
    #print("MSE with X_test and Y_test: %.6f"  %np.mean((Y_test - pred_test) ** 2))

    #Explained variance score: 1 is perfect prediction
    #print("Variance score: %.2f" % lreg.score(X_test, Y_test))

    result={}
    result["method"]="BayesianRidge"
    if normalize :
        result["normalize"]="Y"
    else:
        result["normalize"]="N"
    result["X_train_shape"]=X_train.shape
    result["Y_train_shape"]=Y_train.shape
    result["X_test_shape"]=X_test.shape
    result["Y_test_shape"]=Y_test.shape
    result["intercept"]=lreg.intercept_
    result["num_coef"]=len(lreg.coef_)
    result["max_fact"]=cf_dict.loc[coeff_df.iloc[coeff_df["Coefficient"].idxmax()]["Fact"],"description"]
    result["max_fact_value"]=coeff_df.iloc[coeff_df["Coefficient"].idxmax()]["Coefficient"]
    result["MSE_train"]=np.mean((Y_train - pred_train) ** 2)
    result["MSE_test"]=np.mean((Y_test - pred_test) ** 2)
    result["variance"]=lreg.score(X_test, Y_test)
    return pred_test,coeff_df,pred_train,result
開發者ID:KaterynaD,項目名稱:2016-US-President-Election-Primary-Results-Analysis,代碼行數:66,代碼來源:LinearRegression.py

示例6: main

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import score [as 別名]
def main():
    usage = 'usage: %prog [options] <model_file>'
    parser = OptionParser(usage)
    parser.add_option('-c', dest='center_dist', default=10, type='int', help='Distance between the motifs and sequence center [Default: %default]')
    parser.add_option('-d', dest='model_hdf5_file', default=None, help='Pre-computed model output as HDF5 [Default: %default]')
    parser.add_option('-g', dest='cuda', default=False, action='store_true', help='Run on the GPGPU [Default: %default]')
    parser.add_option('-l', dest='seq_length', default=600, type='int', help='Sequence length [Default: %default]')
    parser.add_option('-o', dest='out_dir', default='heat', help='Output directory [Default: %default]')
    parser.add_option('-t', dest='targets', default='0', help='Comma-separated list of target indexes to plot (or -1 for all) [Default: %default]')
    (options,args) = parser.parse_args()

    if len(args) != 1:
        parser.error('Must provide Basset model file')
    else:
        model_file = args[0]

    out_targets = [int(ti) for ti in options.targets.split(',')]

    if not os.path.isdir(options.out_dir):
        os.mkdir(options.out_dir)

    random.seed(1)

    # torch options
    cuda_str = ''
    if options.cuda:
        cuda_str = '-cuda'

    #################################################################
    # place filter consensus motifs
    #################################################################
    # determine filter consensus motifs
    filter_consensus = get_filter_consensus(model_file, options.out_dir, cuda_str)

    seqs_1hot = []
    num_filters = len(filter_consensus)
    # num_filters = 40
    filter_len = filter_consensus[0].shape[1]

    # position the motifs
    left_i = options.seq_length/2 - options.center_dist - filter_len
    right_i = options.seq_length/2 + options.center_dist

    ns_1hot = np.zeros((4,options.seq_length)) + 0.25
    # ns_1hot = np.zeros((4,options.seq_length))
    # for i in range(options.seq_length):
    #     nt_i = random.randint(0,3)
    #     ns_1hot[nt_i,i] = 1

    for i in range(num_filters):
        for j in range(num_filters):
            # copy the sequence of N's
            motifs_seq = np.copy(ns_1hot)

            # write them into the one hot coding
            motifs_seq[:,left_i:left_i+filter_len] = filter_consensus[i]
            motifs_seq[:,right_i:right_i+filter_len] = filter_consensus[j]

            # save
            seqs_1hot.append(motifs_seq)

    # make a full array
    seqs_1hot = np.array(seqs_1hot)

    # reshape for spatial
    seqs_1hot = seqs_1hot.reshape((seqs_1hot.shape[0],4,1,options.seq_length))


    #################################################################
    # place filter consensus motifs
    #################################################################
    # save to HDF5
    seqs_file = '%s/motif_seqs.h5' % options.out_dir
    h5f = h5py.File(seqs_file, 'w')
    h5f.create_dataset('test_in', data=seqs_1hot)
    h5f.close()

    # predict scores
    scores_file = '%s/motif_seqs_scores.h5' % options.out_dir
    torch_cmd = 'th basset_place2_predict.lua %s %s %s %s' % (cuda_str, model_file, seqs_file, scores_file)
    subprocess.call(torch_cmd, shell=True)

    # load in scores
    hdf5_in = h5py.File(scores_file, 'r')
    motif_seq_scores = np.array(hdf5_in['scores'])
    hdf5_in.close()

    #################################################################
    # analyze
    #################################################################
    for ti in out_targets:
        #################################################################
        # compute pairwise expectations
        #################################################################
        # X = np.zeros((motif_seq_scores.shape[0],num_filters))
        # xi = 0
        # for i in range(num_filters):
        #     for j in range(num_filters):
        #         X[xi,i] += 1
        #         X[xi,j] += 1
#.........這裏部分代碼省略.........
開發者ID:HFpostdoc,項目名稱:Basset,代碼行數:103,代碼來源:basset_place2.py


注:本文中的sklearn.linear_model.BayesianRidge.score方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。