當前位置: 首頁>>代碼示例>>Python>>正文


Python BayesianRidge.fit方法代碼示例

本文整理匯總了Python中sklearn.linear_model.BayesianRidge.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python BayesianRidge.fit方法的具體用法?Python BayesianRidge.fit怎麽用?Python BayesianRidge.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model.BayesianRidge的用法示例。


在下文中一共展示了BayesianRidge.fit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ridreg

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def ridreg(df,test):
    clf = BayesianRidge()
    
    target = df['count']
    train  = df[['time','temp']]
    test   = test2[['time','temp']]

    clf.fit(train,target)
    final = []
    print(test.head(3))
    for i, row in enumerate(test.values):
        y=[]
        for x in row:
            x= float(x)
            y.append(x)
            # print(x)
            final.append(y)
    predicted_probs= clf.predict(final)
    # print(predicted_probs.shape)
    # predicted_probs = pd.Series(predicted_probs)
    # predicted_probs = predicted_probs.map(lambda x: int(x))

    keep = pd.read_csv('data/test.csv')
    keep = keep['datetime']
    # #save to file
    predicted_probs= pd.DataFrame(predicted_probs)
    print(predicted_probs.head(3))
    predicted_probs.to_csv('data/submission3.csv',index=False)
開發者ID:grahamannett,項目名稱:bike-kaggle,代碼行數:30,代碼來源:main_functions.py

示例2: bayes_ridge_reg

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
 def bayes_ridge_reg(self):
     br = BayesianRidge()
     br.fit(self.x_data, self.y_data)
     adjusted_result = br.predict(self.x_data)
     print "bayes ridge params", br.coef_, br.intercept_
     print "bayes ridge accuracy", get_accuracy(adjusted_result, self.y_data)
     return map(int, list(adjusted_result))
開發者ID:AloneGu,項目名稱:ml_algo_box,代碼行數:9,代碼來源:regression_cls.py

示例3: bayesian_ridge_regression

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def bayesian_ridge_regression(feature_array, label_array):
    clf = BayesianRidge(compute_score=True)
    clf.fit(feature_array, label_array)

    ols = LinearRegression()
    ols.fit(feature_array, label_array)


    n_features = 9

    plt.figure(figsize=(6, 5))
    plt.title("Weights of the model")
    plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate")
    plt.plot(label_array, 'g-', label="Ground truth")
    plt.plot(ols.coef_, 'r--', label="OLS estimate")
    plt.xlabel("Features")
    plt.ylabel("Values of the weights")
    plt.legend(loc="best", prop=dict(size=12))

    plt.figure(figsize=(6, 5))
    plt.title("Histogram of the weights")
    plt.hist(clf.coef_, bins=n_features, log=True)
    # plt.plot(clf.coef_[feature_array], 5 * np.ones(len(feature_array)),
    #          'ro', label="Relevant features")
    plt.ylabel("Features")
    plt.xlabel("Values of the weights")
    plt.legend(loc="lower left")

    plt.figure(figsize=(6, 5))
    plt.title("Marginal log-likelihood")
    plt.plot(clf.scores_)
    plt.ylabel("Score")
    plt.xlabel("Iterations")
    plt.show()
開發者ID:otownsend92,項目名稱:BitcoinPricePredictor,代碼行數:36,代碼來源:ridgeRegression.py

示例4: bayesRegr

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def bayesRegr(source, target):
    # Binarize source
    clf = BayesianRidge()
    features = source.columns[:-1]
    klass = source[source.columns[-1]]
    clf.fit(source[features], klass)
    preds = clf.predict(target[target.columns[:-1]])
    return preds
開發者ID:rahlk,項目名稱:Bellwether,代碼行數:10,代碼來源:model.py

示例5: fit_model_10

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
    def fit_model_10(self,toWrite=False):
        model = BayesianRidge(n_iter=5000)

        for data in self.cv_data:
            X_train, X_test, Y_train, Y_test = data
            model.fit(X_train,Y_train)
            pred = model.predict(X_test)
            print("Model 10 score %f" % (logloss(Y_test,pred),))

        if toWrite:
            f2 = open('model10/model.pkl','w')
            pickle.dump(model,f2)
            f2.close()
開發者ID:JakeMick,項目名稱:kaggle,代碼行數:15,代碼來源:days_work.py

示例6: train_BayesianRegressionModel

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def train_BayesianRegressionModel(
    X,
    y,
    n_iter=300,
    tol=0.001,
    alpha_1=1e-06,
    alpha_2=1e-06,
    lambda_1=1e-06,
    lambda_2=1e-06,
    compute_score=False,
    fit_intercept=True,
    normalize=False,
    copy_X=True,
    verbose=False,
):
    """
    Train a Bayesian regression model
    """
    model = BayesianRidge(
        n_iter=n_iter,
        tol=tol,
        alpha_1=alpha_1,
        alpha_2=alpha_2,
        lambda_1=lambda_1,
        lambda_2=lambda_2,
        compute_score=compute_score,
        fit_intercept=fit_intercept,
        normalize=normalize,
        copy_X=copy_X,
        verbose=verbose,
    )
    model = model.fit(X, y)
    return model
開發者ID:LatencyTDH,項目名稱:Pykit-Learn,代碼行數:35,代碼來源:regression_utils.py

示例7: br_modeling

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def br_modeling(data, y_name, candidates_location):
    from sklearn.linear_model import BayesianRidge
    temp = data.copy()
    candidates = get_variables("./%s" % candidates_location)
    temp = rf_trim(temp, y_name, candidates)
    model = BayesianRidge()
    res = model.fit(temp[candidates], temp[y_name])
    joblib.dump(res, "./%sbr_model%s.pkl" % (y_name, datetime.datetime.today()))
    return res
開發者ID:soumyadsanyal,項目名稱:healthsavr,代碼行數:11,代碼來源:health.py

示例8: fit_polynomial_bayesian_skl

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def fit_polynomial_bayesian_skl(X, Y, degree,
                                lambda_shape=1.e-6, lambda_invscale=1.e-6,
                                padding=10, n=100,
                                X_unknown=None):
    X_v = pol.polyvander(X, degree)

    clf = BayesianRidge(lambda_1=lambda_shape, lambda_2=lambda_invscale)
    clf.fit(X_v, Y)

    coeff = np.copy(clf.coef_)

    # there some weird intercept thing
    # since the Vandermonde matrix has 1 at the beginning, just add this
    # intercept to the first coeff
    coeff[0] += clf.intercept_

    ret_ = [coeff]

    # generate the line
    x = np.linspace(X.min()-padding, X.max()+padding, n)
    x_v = pol.polyvander(x, degree)

    # using the provided predict method
    y_1 = clf.predict(x_v)

    # using np.dot() with coeff
    y_2 = np.dot(x_v, coeff)

    ret_.append(((x, y_1), (x, y_2)))

    if X_unknown is not None:
        xu_v = pol.polyvander(X_unknown, degree)

        # using the predict method
        yu_1 = clf.predict(xu_v)

        # using np.dot() with coeff
        yu_2 = np.dot(xu_v, coeff)

        ret_.append(((X_unknown, yu_1), (X_unknown, yu_2)))

    return ret_
開發者ID:motjuste,項目名稱:patt-rex,代碼行數:44,代碼來源:fitting.py

示例9: train_classiifer

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def train_classiifer(X_train, y_train, to_tune, classifier):
    # Initialize Classifier.
    clf = BayesianRidge()
    clf = SVR(kernel='rbf', C=1e3, gamma=0.1)
    #clf = RandomForestRegressor()
    if classifier:
        clf = classifier
        to_tune = False
    if to_tune:
        # Grid search: find optimal classifier parameters.
        param_grid = {'alpha_1': sp_rand(), 'alpha_2': sp_rand()}
        param_grid = {'C': sp_rand(), 'gamma': sp_rand()}
        rsearch = RandomizedSearchCV(estimator=clf, 
                                     param_distributions=param_grid, n_iter=5000)
        rsearch.fit(X_train, y_train)
        # Use tuned classifier.
        clf = rsearch.best_estimator_
          
    # Trains Classifier   
    clf.fit(X_train, y_train)
    return clf
開發者ID:alvations,項目名稱:oque,代碼行數:23,代碼來源:que.py

示例10: build_bayesian_rr

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def build_bayesian_rr(x_train, y_train, x_test, y_test, n_features):
    """
    Constructing a Bayesian ridge regression model from input dataframe
    :param x_train: features dataframe for model training
    :param y_train: target dataframe for model training
    :param x_test: features dataframe for model testing
    :param y_test: target dataframe for model testing
    :return: None
    """
    clf = BayesianRidge()
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)

    # Mean absolute error regression loss
    mean_abs = sklearn.metrics.mean_absolute_error(y_test, y_pred)
    # Mean squared error regression loss
    mean_sq = sklearn.metrics.mean_squared_error(y_test, y_pred)
    # Median absolute error regression loss
    median_abs = sklearn.metrics.median_absolute_error(y_test, y_pred)
    # R^2 (coefficient of determination) regression score function
    r2 = sklearn.metrics.r2_score(y_test, y_pred)
    # Explained variance regression score function
    exp_var_score = sklearn.metrics.explained_variance_score(y_test, y_pred)
    # Optimal ridge regression alpha value from CV
    ridge_alpha = clf.alpha_

    with open('../trained_networks/brr_%d_data.pkl' % n_features, 'wb') as results:
        pickle.dump(clf, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_sq, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(median_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(r2, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(exp_var_score, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(y_pred, results, pickle.HIGHEST_PROTOCOL)

    return
開發者ID:pearlphilip,項目名稱:USP-inhibition,代碼行數:38,代碼來源:models.py

示例11: br_modeling

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def br_modeling(data,y_name,candidates_location):
 from sklearn.linear_model import BayesianRidge
 temp=data.copy()
 print("made temp copy")
 candidates=get_variables("./%s"%candidates_location)
 print("got candidates for regressors")
 temp=rf_trim(temp,y_name,candidates)
 print("trimmed dataset")
 model=BayesianRidge()
 print("assigned model")
 res=model.fit(temp[candidates],temp[y_name])
 print("fit model")
 joblib.dump(res,"./%sbr_model%s.pkl"%(y_name,datetime.datetime.today()))
 print("saved model")
 return res
開發者ID:soumyadsanyal,項目名稱:healthsavr-back,代碼行數:17,代碼來源:health.py

示例12: bayes_ridge_reg

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def bayes_ridge_reg(x_data,y_data):
    br = BayesianRidge()
    br.fit(x_data,y_data)
    print 'br params',br.coef_,br.intercept_
    adjusted_result = br.predict(x_data)
    return map(int,list(adjusted_result))
開發者ID:AloneGu,項目名稱:ml_algo_box,代碼行數:8,代碼來源:linear_r.py

示例13: scale

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
df = pd.concat(frames, axis=0, ignore_index=True)

### Imputing DYAR
train = df[(df.DYAR.isnull() ==False) & (df.pct_team_tgts.isnull() == False)]
train.reset_index(inplace=True, drop=True)
test = df[(df.DYAR.isnull() == True) & (df.pct_team_tgts.isnull() == False)]
test.reset_index(inplace= True, drop=True)

features = ['targets', 'receptions', 'rec_tds', 'start_ratio', 'pct_team_tgts', 'pct_team_receptions', 'pct_team_touchdowns',
            'rec_yards', 'dpi_yards', 'fumbles', 'first_down_ctchs', 'pct_of_team_passyards']
X = scale(train[features])
y = train.DYAR

# Our best model for predicting DYAR was a Bayesian Ridge Regressor
br = BayesianRidge()
br.fit(X,y)
dyar_predictions = pd.DataFrame(br.predict(scale(test[features])), columns = ['DYAR_predicts'])

test = test.join(dyar_predictions)
test['DYAR'] = test['DYAR_predicts']
test.drop('DYAR_predicts', inplace=True, axis=1)

frames = [train,test]
df = pd.concat(frames, axis=0, ignore_index=True)

### Imputing EYds
train = df[(df.EYds.isnull() ==False) & (df.pct_team_tgts.isnull() == False)]
train.reset_index(inplace=True, drop=True)
test = df[(df.EYds.isnull() == True) & (df.pct_team_tgts.isnull() == False)]
test.reset_index(inplace= True, drop=True)
開發者ID:cl65610,項目名稱:GABBERT,代碼行數:32,代碼來源:wr_analysis.py

示例14: LinearRegression

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
# Linear Regression
print 'linear'
lr = LinearRegression()
#lr.fit(x[:, np.newaxis], y)
#lr_sts_scores = lr.predict(xt[:, np.newaxis])
lr.fit(x, y)
lr_sts_scores = lr.predict(xt)


# Baysian Ridge Regression
print 'baysian ridge'
br = BayesianRidge(compute_score=True)
#br.fit(x[:, np.newaxis], y)
#br_sts_scores = br.predict(xt[:, np.newaxis])
br.fit(x, y)
br_sts_scores = br.predict(xt)


# Elastic Net
print 'elastic net'
enr = ElasticNet()
#enr.fit(x[:, np.newaxis], y)
#enr_sts_scores = enr.predict(xt[:, np.newaxis])
enr.fit(x, y)
enr_sts_scores = enr.predict(xt)


# Passive Aggressive Regression
print 'passive aggressive'
par = PassiveAggressiveRegressor()
開發者ID:BinbinBian,項目名稱:USAAR-SemEval-2015,代碼行數:32,代碼來源:carolling-old.py

示例15: main

# 需要導入模塊: from sklearn.linear_model import BayesianRidge [as 別名]
# 或者: from sklearn.linear_model.BayesianRidge import fit [as 別名]
def main():
    parser = argparse.ArgumentParser(description="""Creates embeddings predictions.""")
    parser.add_argument('--train')
    parser.add_argument('--test')
    parser.add_argument('--embeddings')
    parser.add_argument('--cv',default=False)


    args = parser.parse_args()

    stoplist = stopwords.words("english")
    stoplist.extend("it's 've 's i'm he's she's you're we're they're i'll you'll he'll ".split(" "))


    embeddings={}
    for line in codecs.open(args.embeddings,encoding="utf-8").readlines():
        line = line.strip()
        if line:
            a= line.split(" ")
            embeddings[a[0]] = np.array([float(v) for v in a[1:]]) #cast to float, otherwise we cannot operate

    train_indices = []
    test_indices = []
    train_scores = []
    train_features = []
    test_features = []


    # if args.learner == "logisticregression":
    #     learner= LogisticRegression()
    #     learner_type = "classification"
    # elif args.learner == "decisiontreeclassification":
    #     learner = tree.DecisionTreeClassifier()
    #     learner_type = "classification"
    # elif args.learner == "decisiontreeregression":
    #     learner = tree.DecisionTreeRegressor()
    #     learner_type = "regression"
    # elif args.learner == "bayesianridge":
    #     learner = BayesianRidge()
    #     learner_type = "regression"
    # else:
    learner = BayesianRidge()
    learner_type = "regression"

    le = preprocessing.LabelEncoder()


    for line in open(args.train).readlines():
        (index, score, tweet) = line.strip().split("\t")
        train_indices.append(index)
        train_scores.append(float(score))
        tweet = tweet.split(" ")
        train_features.append(embedfeats(tweet,embeddings,stoplist))


    train_indices = np.array(train_indices)
    train_scores = np.array(train_scores)
    train_features = np.array(train_features)

    train_scores_int = [roundup(v) for v in train_scores]
    le.fit(train_scores_int)

    train_scores_int_transformed = le.transform(train_scores_int)


    if args.cv:
        train_cv={}
        cross=cross_validation.KFold(len(train_scores),n_folds=10)
        acc=[]
        for train_index, test_index in cross:
            #if args.debug:
            #    print("TRAIN:", len(train_index), "TEST:", len(test_index))
            X=train_features
            y=train_scores
            X_train, X_test = X[train_index], X[test_index]
            y_train, y_test = y[train_index], y[test_index]


            learner.fit(X_train,y_train)

            y_pred= learner.predict(X_test)
            assert(len(y_pred)==len(test_index))
            tids=train_indices[test_index]
            for twid,pred in zip(tids,y_pred):
                train_cv[twid] =  pred

            acc.append(cosine_similarity(y_test,y_pred)[0][0])

        print >>sys.stderr, "Cosine of 10-folds:", acc
        print >>sys.stderr, "Macro average:", np.mean(np.array(acc)), np.std(np.array(acc))

        for twid in train_indices:
            print "{}\t{}".format(twid,train_cv[twid])
    else:

        for line in open(args.test).readlines():
            (index, score, tweet) = line.strip().split("\t")
            test_indices.append(index)
            #scores.append(score)
            tweet = tweet.split(" ")
#.........這裏部分代碼省略.........
開發者ID:samtmcg,項目名稱:semevel_t11_2015,代碼行數:103,代碼來源:embeddings_predictor.py


注:本文中的sklearn.linear_model.BayesianRidge.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。