當前位置: 首頁>>代碼示例>>Python>>正文


Python PCA.transform方法代碼示例

本文整理匯總了Python中sklearn.decomposition.pca.PCA.transform方法的典型用法代碼示例。如果您正苦於以下問題:Python PCA.transform方法的具體用法?Python PCA.transform怎麽用?Python PCA.transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.decomposition.pca.PCA的用法示例。


在下文中一共展示了PCA.transform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: PCA

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
	def PCA佮SVM模型(self, 問題, 答案):
		sample_weight_constant = np.ones(len(問題))
		clf = svm.SVC(C=1)
		pca = PCA(n_components=100)
# 		clf = svm.NuSVC()
		print('訓練PCA')
		pca.fit(問題)
		print('訓練SVM')
		clf.fit(pca.transform(問題), 答案, sample_weight=sample_weight_constant)
		print('訓練了')
		return lambda 問:clf.predict(pca.transform(問))
開發者ID:sih4sing5hong5,項目名稱:huan1-ik8_gian2-kiu3,代碼行數:13,代碼來源:訓練模型.py

示例2: dimensional

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def dimensional(tx, ty, rx, ry, add=None):
    print "pca"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = PCA(n_components = i)
        t0 = time()
        compressor.fit(tx, y=ty)
        newtx = compressor.transform(tx)
        runtime=time() - t0
        V = compressor.components_
        print runtime, V.shape, compressor.score(tx)
        distances = np.linalg.norm(tx-compressor.inverse_transform(newtx))
        print distances
    print "pca done"
    print "ica"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = ICA(whiten=True)
        t0 = time()
        compressor.fit(tx, y=ty)
        newtx = compressor.transform(tx)
        runtime=time() - t0
        print newtx.shape, runtime
        distances = np.linalg.norm(tx-compressor.inverse_transform(newtx))
        print distances
    print "ica done"
    print "RP"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = RandomProjection(n_components=i)
        t0 = time()
        compressor.fit(tx, y=ty)    
        newtx = compressor.transform(tx)
        runtime=time() - t0
        shape = newtx.shape
        print runtime, shape
    print "RP done"
    print "K-best"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = best(add, k=i)
        t0 = time()
        compressor.fit(tx, y=ty.ravel())
        newtx = compressor.transform(tx)
        runtime=time() - t0
        shape = newtx.shape
        print runtime, shape
    print "K-best done"
開發者ID:jessrosenfield,項目名稱:unsupervised-learning,代碼行數:54,代碼來源:script.py

示例3: pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def pca(target, control, title, name_one, name_two):
    np_fps = []
    for fp in target + control:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    ys_fit = [1] * len(target) + [0] * len(control)
    names = ["PAINS", "Control"]
    pca = PCA(n_components=3)
    pca.fit(np_fps)
    np_fps_r = pca.transform(np_fps)
    p1 = figure(x_axis_label="PC1",
                y_axis_label="PC2",
                title=title)
    p1.scatter(np_fps_r[:len(target), 0], np_fps_r[:len(target), 1],
               color="blue", legend=name_one)
    p1.scatter(np_fps_r[len(target):, 0], np_fps_r[len(target):, 1],
               color="red", legend=name_two)
    p2 = figure(x_axis_label="PC2",
                y_axis_label="PC3",
                title=title)
    p2.scatter(np_fps_r[:len(target), 1], np_fps_r[:len(target), 2],
               color="blue", legend=name_one)
    p2.scatter(np_fps_r[len(target):, 1], np_fps_r[len(target):, 2],
               color="red", legend=name_two)
    return HBox(p1, p2)
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:28,代碼來源:pca_plots_on_fp.py

示例4: pca_plot

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def pca_plot(fp_list, clusters):
    np_fps = []
    for fp in fp_list:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    pca = PCA(n_components=3)
    pca.fit(np_fps)
    np_fps_r = pca.transform(np_fps)
    p1 = figure(x_axis_label="PC1",
                y_axis_label="PC2",
                title="PCA clustering of PAINS")
    p2 = figure(x_axis_label="PC2",
                y_axis_label="PC3",
                title="PCA clustering of PAINS")
    color_vector = ["blue", "red", "green", "orange", "pink", "cyan", "magenta",
                    "brown", "purple"]
    print len(set(clusters))
    for clust_num in set(clusters):
        print clust_num
        local_cluster = []
        for i in xrange(len(clusters)):
            if clusters[i] == clust_num:
                local_cluster.append(np_fps_r[i])
        print len(local_cluster)
        p1.scatter(np_fps_r[:,0], np_fps_r[:,1],
                   color=color_vector[clust_num])
        p2.scatter(np_fps_r[:,1], np_fps_r[:,2],
                   color=color_vector[clust_num])
    return HBox(p1, p2)
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:32,代碼來源:hclust_PAINS.py

示例5: LogisticClassifier

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
class LogisticClassifier(object):
    def __init__(self, learning_rate=0.01, reg=0., momentum=0.5):
        self.classifier = LogisticRegression(learning_rate, reg, momentum)
        self.pca = None
        self.scaler = None

    def sgd_optimize(self, data, n_epochs, mini_batch_size):
        data = self._preprocess_data(data)
        sgd_optimization(data, self.classifier, n_epochs, mini_batch_size)

    def _preprocess_data(self, data):
        # center data and scale to unit std
        if self.scaler is None:
             self.scaler = StandardScaler()
             data = self.scaler.fit_transform(data)
        else:
            data = self.scaler.transform(data)

        if self.pca is None:
            # use minika's mle to guess appropriate dimension
            self.pca = PCA(n_components='mle')
            data = self.pca.fit_transform(data)
        else:
            data = self.pca.transform(data)

        return data
開發者ID:joshloyal,項目名稱:statlearn,代碼行數:28,代碼來源:logreg.py

示例6: pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def pca(tx, ty, rx, ry):
    compressor = PCA(n_components = tx[1].size/2)
    compressor.fit(tx, y=ty)
    newtx = compressor.transform(tx)
    newrx = compressor.transform(rx)
    em(newtx, ty, newrx, ry, add="wPCAtr", times=10)
    km(newtx, ty, newrx, ry, add="wPCAtr", times=10)
    nn(newtx, ty, newrx, ry, add="wPCAr")
開發者ID:iRapha,項目名稱:Machine-Learning,代碼行數:10,代碼來源:analysis.py

示例7: pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def pca(tx, ty, rx, ry):
    print "pca"
    compressor = PCA(n_components = tx[1].size/2)
    compressor.fit(tx, y=ty)
    newtx = compressor.transform(tx)
    newrx = compressor.transform(rx)
    em(newtx, ty, newrx, ry, add="wPCAtr")  
    km(newtx, ty, newrx, ry, add="wPCAtr")
    nn(newtx, ty, newrx, ry, add="wPCAtr")
    print "pca done"
開發者ID:jessrosenfield,項目名稱:unsupervised-learning,代碼行數:12,代碼來源:old.py

示例8: do_train_with_freq

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def do_train_with_freq():
    tf_mix = TrainFiles(train_path = train_path_mix, labels_file = labels_file, test_size = 0.)
    tf_freq = TrainFiles(train_path = train_path_freq, labels_file = labels_file, test_size = 0.)

    X_m, Y_m, _, _ = tf_mix.prepare_inputs()
    X_f, Y_f, _, _ = tf_freq.prepare_inputs()

    X = np.c_[X_m, X_f]
    Y = Y_f

    X, Xt, Y, Yt = train_test_split(X, Y, test_size = 0.1)
    sl = SKSupervisedLearning(SVC, X, Y, Xt, Yt)
    sl.fit_standard_scaler()

    pca = PCA(250)
    pca.fit(np.r_[sl.X_train_scaled, sl.X_test_scaled])
    X_pca = pca.transform(sl.X_train_scaled)
    X_pca_test = pca.transform(sl.X_test_scaled)

    #sl.train_params = {'C': 100, 'gamma': 0.0001, 'probability' : True}
    #print "Start SVM: ", time_now_str()
    #sl_ll_trn, sl_ll_tst = sl.fit_and_validate()
    #print "Finish Svm: ", time_now_str()

    ##construct a dataset for RBM
    #X_rbm = X[:, 257:]
    #Xt_rbm = X[:, 257:]

    #rng = np.random.RandomState(123)
    #rbm = RBM(X_rbm, n_visible=X_rbm.shape[1], n_hidden=X_rbm.shape[1]/4, numpy_rng=rng)

    #pretrain_lr = 0.1
    #k = 2
    #pretraining_epochs = 200
    #for epoch in xrange(pretraining_epochs):
    #    rbm.contrastive_divergence(lr=pretrain_lr, k=k)
    #    cost = rbm.get_reconstruction_cross_entropy()
    #    print >> sys.stderr, 'Training epoch %d, cost is ' % epoch, cost


    trndata, tstdata = createDataSets(X_pca, Y, X_pca_test, Yt)
    fnn = train(trndata, tstdata, epochs = 1000, test_error = 0.025, momentum = 0.2, weight_decay = 0.0001)
開發者ID:CyberIntelMafia,項目名稱:KaggleMalware,代碼行數:44,代碼來源:train_nn.py

示例9: train_pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def train_pca(pains_fps, num_components=3):
    '''
    Dimensional reduction of fps bit vectors to principal components
    :param pains_fps:
    :return: pca reduced fingerprints bit vectors
    '''
    np_fps = []
    for fp in pains_fps:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    pca = PCA(n_components=num_components)
    pca.fit(np_fps)
    fps_reduced = pca.transform(np_fps)
    return fps_reduced
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:17,代碼來源:kmeans_clustering_of_pca_reduction.py

示例10: reduction

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def reduction(data, params):

    # parse parameters

    for item in params:
        if isinstance(params[item], str):
            exec(item+'='+'"'+params[item]+'"')
        else:
            exec(item+'='+str(params[item]))

    # apply PCA

    pca = PCA(n_components=n_components)
    pca.fit(data)
    X = pca.transform(data)

    return X
開發者ID:emilleishida,項目名稱:MLSNeSpectra,代碼行數:19,代碼來源:pca.py

示例11: pca_no_labels

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def pca_no_labels(target, title="PCA clustering of PAINS", color="blue"):
    np_fps = []
    for fp in target:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    pca = PCA(n_components=3)
    pca.fit(np_fps)
    np_fps_r = pca.transform(np_fps)
    p3 = figure(x_axis_label="PC1",
                y_axis_label="PC2",
                title=title)
    p3.scatter(np_fps_r[:, 0], np_fps_r[:, 1], color=color)
    p4 = figure(x_axis_label="PC2",
                y_axis_label="PC3",
                title=title)
    p4.scatter(np_fps_r[:, 1], np_fps_r[:, 2], color=color)
    return HBox(p3, p4)
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:20,代碼來源:pca_plots_on_fp.py

示例12: airline_pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
def airline_pca():
    X = np.array(pca_data)
    pca = PCA(n_components=3)
    pca.fit(X)
    Y=pca.transform(normalize(X))
    
    fig = plt.figure(1, figsize=(8, 6))
    ax = Axes3D(fig, elev=-150, azim=110)
    colordict = {carrier:i for i,carrier in enumerate(major_carriers)}
    pointcolors  = [colordict[carrier] for carrier in target_carrier]
    ax.scatter(Y[:, 0], Y[:, 1], Y[:, 2], c=pointcolors)
    ax.set_title("First three PCA directions")
    ax.set_xlabel("1st eigenvector")
    ax.w_xaxis.set_ticklabels([])
    ax.set_ylabel("2nd eigenvector")
    ax.w_yaxis.set_ticklabels([])
    ax.set_zlabel("3rd eigenvector")
    ax.w_zaxis.set_ticklabels([])
開發者ID:reedharder,項目名稱:airline_network_games,代碼行數:20,代碼來源:market_carrier_analysis.py

示例13: r

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
    ## Generate predictions
    r('predictions_dl <- h2o.predict(dlmodel, test3.hex)')
    r('head(predictions_dl)')
    ## new predictions
    pred = r('as.matrix(predictions_dl)')
    return var(pred -test)
################################################################

figure()
variances_table = []

for i in range(2,11,1):
    pca = PCA(n_components=i)
    der = derivatives[train_mask_TL]
    pca.fit(der)
    X = pca.transform(derivatives[test_mask])
    pred_pca_temp = (pca.inverse_transform(X))

    #
    var_fraction_pca_TL = var(pred_pca_temp-derivatives[test_mask])/var(derivatives[test_mask])
    #plot([i], [var(pred_pca_temp-derivatives[test_mask])],'D')

    var_fraction_DL_TL = DL( derivatives[train_mask_TL], derivatives[test_mask], i)/var(derivatives[test_mask])
    #plot([i], [var_DL_TL ],'Dk')

    pca = PCA(n_components=i)
    der = derivatives[train_mask_no_TL]
    pca.fit(der)
    X = pca.transform(derivatives[test_mask])
    pred_pca_temp = (pca.inverse_transform(X))
開發者ID:emilleishida,項目名稱:MLSNeSpectra,代碼行數:32,代碼來源:TR_pca_DL.py

示例14: open

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
from sklearn.decomposition.pca import PCA # package for principal
                                          # component analysis
from sklearn import svm
import csv



X_train = pd.read_csv('train.csv', header=None).as_matrix()
X_test = pd.read_csv('test.csv', header=None).as_matrix()
trainLabels = np.loadtxt(open('trainLabels.csv', 'rb'), delimiter=',', skiprows=0)

pca=PCA(n_components=12, whiten=True)
#pca.fit(np.r_[X_train, X_test],trainLabels)
pca.fit(X_train)

X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)

clf = svm.SVC(C=3, gamma=0.6)
clf.fit(X_train_pca,trainLabels)

predictions = clf.predict(X_test_pca)

with open('svm_model_submission.csv', 'wb') as prediction_file:
    writer=csv.writer(prediction_file, delimiter=',')
    writer.writerow(['Id','Solution'])
    for i in range(0,len(predictions)):
        writer.writerow([i+1,int(predictions[i])])

# scores around 92%, could maybe get a bit better tweaking parameters for SVC
# -- use GridSearch to do this? Need a way of testing "goodness" of model
開發者ID:clintonboys,項目名稱:kaggle_sklearn_tutorials,代碼行數:33,代碼來源:svm_model.py

示例15: PCA

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import transform [as 別名]
    ax.set_title('%s (%s)' % (name, 'correlation'))

    pos += 1

plt.savefig(wd + '/reports/Figure5_dendrograms_signif_protein.pdf', bbox_inches='tight')
plt.close('all')


# ---- Figure 6
(f, m_plot), pos = plt.subplots(3, 2, sharex=False, sharey=False, figsize=(12, 22)), 0
for name, dataset in datasets_quant.items():
    plot_df = dataset.loc[:, ['FED' in i.upper() for i in dataset.columns]].T

    n_components = 3
    pca_o = PCA(n_components=n_components).fit(plot_df)
    pcs = pca_o.transform(plot_df)
    explained_var = ['%.2f' % (pca_o.explained_variance_ratio_[i] * 100) for i in range(n_components)]

    # Plot 1
    ax = m_plot[pos][0]
    x_pc, y_pc = 0, 1
    ax.scatter(pcs[:, x_pc], pcs[:, y_pc], s=90, c=datasets_colour[name], linewidths=0)
    ax.set_xlabel('PC 1 (%s%%)' % explained_var[x_pc])
    ax.set_ylabel('PC 2 (%s%%)' % explained_var[y_pc])
    ax.set_title(name)
    sns.despine(ax=ax)

    for i, txt in enumerate(plot_df.index):
        ax.annotate(txt, (pcs[:, x_pc][i], pcs[:, y_pc][i]), size='x-small')

    # Plot 2
開發者ID:jorgemlferreira,項目名稱:liverx,代碼行數:33,代碼來源:paper_analysis.py


注:本文中的sklearn.decomposition.pca.PCA.transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。