當前位置: 首頁>>代碼示例>>Python>>正文


Python PCA.fit方法代碼示例

本文整理匯總了Python中sklearn.decomposition.pca.PCA.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python PCA.fit方法的具體用法?Python PCA.fit怎麽用?Python PCA.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.decomposition.pca.PCA的用法示例。


在下文中一共展示了PCA.fit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: pca_plot

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def pca_plot(fp_list, clusters):
    np_fps = []
    for fp in fp_list:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    pca = PCA(n_components=3)
    pca.fit(np_fps)
    np_fps_r = pca.transform(np_fps)
    p1 = figure(x_axis_label="PC1",
                y_axis_label="PC2",
                title="PCA clustering of PAINS")
    p2 = figure(x_axis_label="PC2",
                y_axis_label="PC3",
                title="PCA clustering of PAINS")
    color_vector = ["blue", "red", "green", "orange", "pink", "cyan", "magenta",
                    "brown", "purple"]
    print len(set(clusters))
    for clust_num in set(clusters):
        print clust_num
        local_cluster = []
        for i in xrange(len(clusters)):
            if clusters[i] == clust_num:
                local_cluster.append(np_fps_r[i])
        print len(local_cluster)
        p1.scatter(np_fps_r[:,0], np_fps_r[:,1],
                   color=color_vector[clust_num])
        p2.scatter(np_fps_r[:,1], np_fps_r[:,2],
                   color=color_vector[clust_num])
    return HBox(p1, p2)
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:32,代碼來源:hclust_PAINS.py

示例2: pca_prefit

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def pca_prefit(weights, xs):
    """
    SOMの初期値を計算するための前処理.
    線形変換によって重みベクトル列の主成分とその固有値を入力ベクトル列のものと一致させる.
    :param weights: 初期重みベクトル列
    :param xs: 入力ベクトル列
    :return: 前処理した重みベクトル列
    """
    n = np.shape(xs)[1]
    pca_w = PCA(n_components=n)
    pca_w.fit(weights)
    pca_x = PCA(n_components=n)
    pca_x.fit(xs)

    mean_w = np.mean(weights, axis=0)
    mean_x = np.mean(xs, axis=0)
    com_w = pca_w.components_
    com_x = pca_x.components_
    var_w = pca_w.explained_variance_
    var_x = pca_x.explained_variance_

    var_w[var_w == 0] = np.max(var_w) * 1e-6
    new_w = (weights - mean_w).dot(com_w.T) / np.sqrt(var_w)
    new_w = (new_w * np.sqrt(var_x)).dot(com_x) + mean_x

    return new_w
開發者ID:kzm4269,項目名稱:self-organizing-map,代碼行數:28,代碼來源:prefit.py

示例3: main

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def main():
    print('Reading in data file...')
    data = pd.read_csv(path + 'Sentiment Analysis Dataset.csv',
                       usecols=['Sentiment', 'SentimentText'], error_bad_lines=False)

    print('Pre-processing tweet text...')
    corpus = data['SentimentText']
    vectorizer = TfidfVectorizer(decode_error='replace', strip_accents='unicode',
                                 stop_words='english', tokenizer=tokenize)
    X = vectorizer.fit_transform(corpus.values)
    y = data['Sentiment'].values

    print('Training sentiment classification model...')
    classifier = MultinomialNB()
    classifier.fit(X, y)

    print('Training word2vec model...')
    corpus = corpus.map(lambda x: tokenize(x))
    word2vec = Word2Vec(corpus.tolist(), size=100, window=4, min_count=10, workers=4)
    word2vec.init_sims(replace=True)

    print('Fitting PCA transform...')
    word_vectors = [word2vec[word] for word in word2vec.vocab]
    pca = PCA(n_components=2)
    pca.fit(word_vectors)

    print('Saving artifacts to disk...')
    joblib.dump(vectorizer, path + 'vectorizer.pkl')
    joblib.dump(classifier, path + 'classifier.pkl')
    joblib.dump(pca, path + 'pca.pkl')
    word2vec.save(path + 'word2vec.pkl')

    print('Process complete.')
開發者ID:jdwittenauer,項目名稱:twitter-viz-demo,代碼行數:35,代碼來源:build_models.py

示例4: pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def pca(target, control, title, name_one, name_two):
    np_fps = []
    for fp in target + control:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    ys_fit = [1] * len(target) + [0] * len(control)
    names = ["PAINS", "Control"]
    pca = PCA(n_components=3)
    pca.fit(np_fps)
    np_fps_r = pca.transform(np_fps)
    p1 = figure(x_axis_label="PC1",
                y_axis_label="PC2",
                title=title)
    p1.scatter(np_fps_r[:len(target), 0], np_fps_r[:len(target), 1],
               color="blue", legend=name_one)
    p1.scatter(np_fps_r[len(target):, 0], np_fps_r[len(target):, 1],
               color="red", legend=name_two)
    p2 = figure(x_axis_label="PC2",
                y_axis_label="PC3",
                title=title)
    p2.scatter(np_fps_r[:len(target), 1], np_fps_r[:len(target), 2],
               color="blue", legend=name_one)
    p2.scatter(np_fps_r[len(target):, 1], np_fps_r[len(target):, 2],
               color="red", legend=name_two)
    return HBox(p1, p2)
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:28,代碼來源:pca_plots_on_fp.py

示例5: pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def pca(tx, ty, rx, ry):
    compressor = PCA(n_components = tx[1].size/2)
    compressor.fit(tx, y=ty)
    newtx = compressor.transform(tx)
    newrx = compressor.transform(rx)
    em(newtx, ty, newrx, ry, add="wPCAtr", times=10)
    km(newtx, ty, newrx, ry, add="wPCAtr", times=10)
    nn(newtx, ty, newrx, ry, add="wPCAr")
開發者ID:iRapha,項目名稱:Machine-Learning,代碼行數:10,代碼來源:analysis.py

示例6: pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def pca(tx, ty, rx, ry):
    print "pca"
    compressor = PCA(n_components = tx[1].size/2)
    compressor.fit(tx, y=ty)
    newtx = compressor.transform(tx)
    newrx = compressor.transform(rx)
    em(newtx, ty, newrx, ry, add="wPCAtr")  
    km(newtx, ty, newrx, ry, add="wPCAtr")
    nn(newtx, ty, newrx, ry, add="wPCAtr")
    print "pca done"
開發者ID:jessrosenfield,項目名稱:unsupervised-learning,代碼行數:12,代碼來源:old.py

示例7: PCA

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
	def PCA佮SVM模型(self, 問題, 答案):
		sample_weight_constant = np.ones(len(問題))
		clf = svm.SVC(C=1)
		pca = PCA(n_components=100)
# 		clf = svm.NuSVC()
		print('訓練PCA')
		pca.fit(問題)
		print('訓練SVM')
		clf.fit(pca.transform(問題), 答案, sample_weight=sample_weight_constant)
		print('訓練了')
		return lambda 問:clf.predict(pca.transform(問))
開發者ID:sih4sing5hong5,項目名稱:huan1-ik8_gian2-kiu3,代碼行數:13,代碼來源:訓練模型.py

示例8: train_pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def train_pca(pains_fps, num_components=3):
    '''
    Dimensional reduction of fps bit vectors to principal components
    :param pains_fps:
    :return: pca reduced fingerprints bit vectors
    '''
    np_fps = []
    for fp in pains_fps:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    pca = PCA(n_components=num_components)
    pca.fit(np_fps)
    fps_reduced = pca.transform(np_fps)
    return fps_reduced
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:17,代碼來源:kmeans_clustering_of_pca_reduction.py

示例9: calc_pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def calc_pca(bnd, npc=None, preaverage=False, use_unbiased=False, \
    method='mdp'):
    '''
    Parameters
    ----------
    bnd : BinnedData
      binned data
    npc : int or None, optional
      number of PCs to calculate, defaults to None
    preaverage : bool
      average across repeats?
      
    Returns
    -------
    score : ndarray
      (npc, nobs)
    weight : ndarray
      (npc, nvar)
    '''
    assert method in ['mdp', 'skl']
    data = format_for_fa(bnd, preaverage=preaverage,
                         use_unbiased=use_unbiased)
    if method == 'mdp':    
        pca_node = mdp.nodes.PCANode(output_dim=npc)
        score = pca_node.execute(data)
        weight = pca_node.get_projmatrix()
    elif method == 'skl':
        pca_obj = PCA(n_components=npc)
        score = pca_obj.fit(data).transform(data)
        weight = pca_obj.components_.T
    return score.T, weight.T
開發者ID:amcmorl,項目名稱:motorlab,代碼行數:33,代碼來源:factors.py

示例10: reduction

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def reduction(data, params):

    # parse parameters

    for item in params:
        if isinstance(params[item], str):
            exec(item+'='+'"'+params[item]+'"')
        else:
            exec(item+'='+str(params[item]))

    # apply PCA

    pca = PCA(n_components=n_components)
    pca.fit(data)
    X = pca.transform(data)

    return X
開發者ID:emilleishida,項目名稱:MLSNeSpectra,代碼行數:19,代碼來源:pca.py

示例11: airline_pca

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def airline_pca():
    X = np.array(pca_data)
    pca = PCA(n_components=3)
    pca.fit(X)
    Y=pca.transform(normalize(X))
    
    fig = plt.figure(1, figsize=(8, 6))
    ax = Axes3D(fig, elev=-150, azim=110)
    colordict = {carrier:i for i,carrier in enumerate(major_carriers)}
    pointcolors  = [colordict[carrier] for carrier in target_carrier]
    ax.scatter(Y[:, 0], Y[:, 1], Y[:, 2], c=pointcolors)
    ax.set_title("First three PCA directions")
    ax.set_xlabel("1st eigenvector")
    ax.w_xaxis.set_ticklabels([])
    ax.set_ylabel("2nd eigenvector")
    ax.w_yaxis.set_ticklabels([])
    ax.set_zlabel("3rd eigenvector")
    ax.w_zaxis.set_ticklabels([])
開發者ID:reedharder,項目名稱:airline_network_games,代碼行數:20,代碼來源:market_carrier_analysis.py

示例12: pca_no_labels

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def pca_no_labels(target, title="PCA clustering of PAINS", color="blue"):
    np_fps = []
    for fp in target:
        arr = numpy.zeros((1,))
        DataStructs.ConvertToNumpyArray(fp, arr)
        np_fps.append(arr)
    pca = PCA(n_components=3)
    pca.fit(np_fps)
    np_fps_r = pca.transform(np_fps)
    p3 = figure(x_axis_label="PC1",
                y_axis_label="PC2",
                title=title)
    p3.scatter(np_fps_r[:, 0], np_fps_r[:, 1], color=color)
    p4 = figure(x_axis_label="PC2",
                y_axis_label="PC3",
                title=title)
    p4.scatter(np_fps_r[:, 1], np_fps_r[:, 2], color=color)
    return HBox(p3, p4)
開發者ID:dkdeconti,項目名稱:PAINS-train,代碼行數:20,代碼來源:pca_plots_on_fp.py

示例13: dimensional

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def dimensional(tx, ty, rx, ry, add=None):
    print "pca"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = PCA(n_components = i)
        t0 = time()
        compressor.fit(tx, y=ty)
        newtx = compressor.transform(tx)
        runtime=time() - t0
        V = compressor.components_
        print runtime, V.shape, compressor.score(tx)
        distances = np.linalg.norm(tx-compressor.inverse_transform(newtx))
        print distances
    print "pca done"
    print "ica"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = ICA(whiten=True)
        t0 = time()
        compressor.fit(tx, y=ty)
        newtx = compressor.transform(tx)
        runtime=time() - t0
        print newtx.shape, runtime
        distances = np.linalg.norm(tx-compressor.inverse_transform(newtx))
        print distances
    print "ica done"
    print "RP"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = RandomProjection(n_components=i)
        t0 = time()
        compressor.fit(tx, y=ty)    
        newtx = compressor.transform(tx)
        runtime=time() - t0
        shape = newtx.shape
        print runtime, shape
    print "RP done"
    print "K-best"
    for j in range(tx[1].size):
        i = j + 1
        print "===" + str(i)
        compressor = best(add, k=i)
        t0 = time()
        compressor.fit(tx, y=ty.ravel())
        newtx = compressor.transform(tx)
        runtime=time() - t0
        shape = newtx.shape
        print runtime, shape
    print "K-best done"
開發者ID:jessrosenfield,項目名稱:unsupervised-learning,代碼行數:54,代碼來源:script.py

示例14: do_train_with_freq

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def do_train_with_freq():
    tf_mix = TrainFiles(train_path = train_path_mix, labels_file = labels_file, test_size = 0.)
    tf_freq = TrainFiles(train_path = train_path_freq, labels_file = labels_file, test_size = 0.)

    X_m, Y_m, _, _ = tf_mix.prepare_inputs()
    X_f, Y_f, _, _ = tf_freq.prepare_inputs()

    X = np.c_[X_m, X_f]
    Y = Y_f

    X, Xt, Y, Yt = train_test_split(X, Y, test_size = 0.1)
    sl = SKSupervisedLearning(SVC, X, Y, Xt, Yt)
    sl.fit_standard_scaler()

    pca = PCA(250)
    pca.fit(np.r_[sl.X_train_scaled, sl.X_test_scaled])
    X_pca = pca.transform(sl.X_train_scaled)
    X_pca_test = pca.transform(sl.X_test_scaled)

    #sl.train_params = {'C': 100, 'gamma': 0.0001, 'probability' : True}
    #print "Start SVM: ", time_now_str()
    #sl_ll_trn, sl_ll_tst = sl.fit_and_validate()
    #print "Finish Svm: ", time_now_str()

    ##construct a dataset for RBM
    #X_rbm = X[:, 257:]
    #Xt_rbm = X[:, 257:]

    #rng = np.random.RandomState(123)
    #rbm = RBM(X_rbm, n_visible=X_rbm.shape[1], n_hidden=X_rbm.shape[1]/4, numpy_rng=rng)

    #pretrain_lr = 0.1
    #k = 2
    #pretraining_epochs = 200
    #for epoch in xrange(pretraining_epochs):
    #    rbm.contrastive_divergence(lr=pretrain_lr, k=k)
    #    cost = rbm.get_reconstruction_cross_entropy()
    #    print >> sys.stderr, 'Training epoch %d, cost is ' % epoch, cost


    trndata, tstdata = createDataSets(X_pca, Y, X_pca_test, Yt)
    fnn = train(trndata, tstdata, epochs = 1000, test_error = 0.025, momentum = 0.2, weight_decay = 0.0001)
開發者ID:CyberIntelMafia,項目名稱:KaggleMalware,代碼行數:44,代碼來源:train_nn.py

示例15: showDataTable

# 需要導入模塊: from sklearn.decomposition.pca import PCA [as 別名]
# 或者: from sklearn.decomposition.pca.PCA import fit [as 別名]
def showDataTable():
    title = "Descriptive statistics"
    df = frame[cols]
    data_dsc = df.describe().transpose()
    # dsc = df.describe()

    pca = PCA(n_components=5)
    pca.fit(df)
    pc = pca.explained_variance_ratio_

    data_corr = df.corr()
    eigenValues, eigenVectors = LA.eig(data_corr)
    idx = eigenValues.argsort()[::-1]
    # print sorted(eigenValues, key=int, reverse=True)
    print  eigenValues.argsort()[::-1]
    print  eigenValues.argsort()
    eigenValues = pd.DataFrame(eigenValues[idx]).transpose()
    eigenVectors = pd.DataFrame(eigenVectors[:, idx])

    return render_template("showDataTable.html", title=title, data=df, data_dsc=data_dsc, pca=pd.DataFrame(pc).transpose(),data_corr=data_corr, w=eigenValues, v=eigenVectors)
開發者ID:ashutosh0889,項目名稱:FlaskApp,代碼行數:22,代碼來源:__init__.py


注:本文中的sklearn.decomposition.pca.PCA.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。