本文整理匯總了Python中sklearn.datasets.base.Bunch.text方法的典型用法代碼示例。如果您正苦於以下問題:Python Bunch.text方法的具體用法?Python Bunch.text怎麽用?Python Bunch.text使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.datasets.base.Bunch
的用法示例。
在下文中一共展示了Bunch.text方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import text [as 別名]
#.........這裏部分代碼省略.........
bootstrap_size = args.bootstrap
evaluation_points = 200
print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
evaluation_points, args.fixk,
min_size))
print ("Anytime active learning experiment - use objective function to pick data")
t0 = time.time()
tac = []
tau = []
### experiment starts
for t in range(args.trials):
trial_accu = []
trial_aucs = []
print "*" * 60
print "Trial: %s" % t
student = get_student(clf, cost_model, sent_clf, sent_detector, vct)
student.human_mode = args.expert == 'human'
print "\nStudent: %s " % student
train_indices = []
neutral_data = [] # save the xik vectors
train_x = []
train_y = []
neu_x = [] # data to train the classifier
neu_y = np.array([])
pool = Bunch()
pool.data = data.train.bow.tocsr() # full words, for training
pool.text = data.train.data
pool.target = data.train.target
pool.predicted = []
pool.remaining = set(range(pool.data.shape[0])) # indices of the pool
bootstrapped = False
current_cost = 0
iteration = 0
query_index = None
query_size = None
oracle_answers = 0
calibrated=args.calibrate
while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:
util = []
if not bootstrapped:
## random from each bootstrap
bt = randomsampling.BootstrapFromEach(t * 10)
query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
bootstrapped = True
query = pool.data[query_index]
print "Bootstrap: %s " % bt.__class__.__name__
print
else:
chosen = student.pick_next(pool=pool, step_size=step_size)
query_index = [x for x, y in chosen] # document id of chosen instances
query = [y[0] for x, y in chosen] # sentence of the document
query_size = [1] * len(query_index)
示例2: main
# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import text [as 別名]
#.........這裏部分代碼省略.........
step_size = args.step_size
bootstrap_size = args.bootstrap
evaluation_points = 200
print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
evaluation_points, args.fixk,
min_size))
print ("Anytime active learning experiment - use objective function to pick data")
t0 = time.time()
tac = []
tau = []
### experiment starts
for t in range(args.trials):
trial_accu = []
trial_aucs = []
print "*" * 60
print "Trial: %s" % t
if args.student in "anyunc":
student = randomsampling.AnytimeLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
subpool=250, cost_model=cost_model)
elif args.student in "lambda":
student = randomsampling.AnytimeLearnerDiff(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
subpool=250, cost_model=cost_model, lambda_value=args.lambda_value)
elif args.student in "anyzero":
student = randomsampling.AnytimeLearnerZeroUtility(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
subpool=250, cost_model=cost_model)
else:
raise ValueError("Oops! We do not know that anytime strategy. Try again.")
print "\nStudent: %s " % student
train_indices = []
neutral_text = [] # save the raw text of the queries
neutral_data = [] # save the xik vectors
train_x = []
train_y = []
neu_x = [] # data to train the classifier
neu_y = np.array([])
pool = Bunch()
pool.data = data.train.bow.tocsr() # full words, for training
pool.text = data.train.data
# pool.fixk = data.train.bowk.tocsr() # k words BOW for querying
pool.target = data.train.target
pool.predicted = []
# pool.kwords = np.array(data.train.kwords) # k words
pool.remaining = set(range(pool.data.shape[0])) # indices of the pool
bootstrapped = False
current_cost = 0
iteration = 0
query_index = None
query_size = None
while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:
util = []
if not bootstrapped:
## random from each bootstrap
bt = randomsampling.BootstrapFromEach(t * 10)
query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
bootstrapped = True
query = pool.data[query_index]
print "Bootstrap: %s " % bt.__class__.__name__
print