當前位置: 首頁>>代碼示例>>Python>>正文


Python Bunch.target方法代碼示例

本文整理匯總了Python中sklearn.datasets.base.Bunch.target方法的典型用法代碼示例。如果您正苦於以下問題:Python Bunch.target方法的具體用法?Python Bunch.target怎麽用?Python Bunch.target使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.datasets.base.Bunch的用法示例。


在下文中一共展示了Bunch.target方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: shuffleData

# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import target [as 別名]
 def shuffleData(self, res):
     shuffle(res)
     train = Bunch()
     train.data = map(lambda x:x[1], res)
     train.target = map(lambda x:x[0], res)
     train.target_names = self.names
     return train
開發者ID:anantauprety,項目名稱:sentiment-analysis,代碼行數:9,代碼來源:sentiment_data.py

示例2: main

# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import target [as 別名]
def main():
    accuracies = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = CountVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 3),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())
    vct_analizer = vct.build_tokenizer()
    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = max(100, args.fixk)

    fixk_saved = "{0}{1}.p".format(args.train, args.fixk)

    try:
        fixk_file = open(fixk_saved, "rb")
        data = pickle.load(fixk_file)
    except IOError:
        data = load_dataset(args.train, args.fixk, categories[0], vct, min_size, percent=.5)
        fixk_file = open(fixk_saved, "wb")
        pickle.dump(data, fixk_file)

    # data = load_dataset(args.train, args.fixk, categories[0], vct, min_size)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    parameters = parse_parameters_mat(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__


    #### STUDENT CLASSIFIER
    clf = linear_model.LogisticRegression(penalty="l1", C=1)
    print "\nStudent Classifier: %s" % clf

    #### EXPERT CLASSIFIER

    exp_clf = linear_model.LogisticRegression(penalty='l1', C=.3)
    exp_clf.fit(data.test.bow, data.test.target)
    expert = baseexpert.NeutralityExpert(exp_clf, threshold=args.neutral_threshold,
                                         cost_function=cost_model.cost_function)
    print "\nExpert: %s " % expert

    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          min_size))
    print ("Cheating experiment - use full uncertainty query k words")
    t0 = time.time()
    ### experiment starts
    tx =[]
    tac = []
    tau = []
    for t in range(args.trials):
        trial_accu =[]

        trial_aucs = []

        trial_x_axis = []
        print "*" * 60
        print "Trial: %s" % t

        student = randomsampling.UncertaintyLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t)
        print "\nStudent: %s " % student
        train_indices = []
        train_x = []
        train_y = []
        pool = Bunch()
        pool.data = data.train.bow.tocsr()   # full words, for training
        pool.fixk = data.train.bowk.tocsr()  # k words BOW for querying
        pool.target = data.train.target
        pool.predicted = []
        pool.kwords = np.array(data.train.kwords)  # k words
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        bootstrapped = False

        current_cost = 0
        iteration = 0
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:

            if not bootstrapped:
#.........這裏部分代碼省略.........
開發者ID:mramire8,項目名稱:active,代碼行數:103,代碼來源:unckcheatv2.py

示例3: main

# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import target [as 別名]
def main():
    print args
    print

    accuracies = defaultdict(lambda: [])

    ora_accu = defaultdict(lambda: [])

    oracle_accuracies =[]
    ora_cm = defaultdict(lambda: [])
    lbl_dit = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = TfidfVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=False, ngram_range=(1, 1),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())

    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = 10

    args.fixk = None

    data, vct = load_from_file(args.train, [categories[3]], args.fixk, min_size, vct, raw=True)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    parameters = experiment_utils.parse_parameters_mat(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = experiment_utils.set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__

    ### SENTENCE TRANSFORMATION
    if args.train == "twitter":
        sent_detector = TwitterSentenceTokenizer()
    else:
        sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')

    ## delete <br> to "." to recognize as end of sentence
    data.train.data = experiment_utils.clean_html(data.train.data)
    data.test.data = experiment_utils.clean_html(data.test.data)

    print("Train:{}, Test:{}, {}".format(len(data.train.data), len(data.test.data), data.test.target.shape[0]))
    ## Get the features of the sentence dataset

    ## create splits of data: pool, test, oracle, sentences
    expert_data = Bunch()
    if not args.fulloracle:
        train_test_data = Bunch()

        expert_data.sentence, train_test_data.pool = split_data(data.train)
        expert_data.oracle, train_test_data.test = split_data(data.test)

        data.train.data = train_test_data.pool.train.data
        data.train.target = train_test_data.pool.train.target

        data.test.data = train_test_data.test.train.data
        data.test.target = train_test_data.test.train.target

    ## convert document to matrix
    data.train.bow = vct.fit_transform(data.train.data)
    data.test.bow = vct.transform(data.test.data)

    #### EXPERT CLASSIFIER: ORACLE
    print("Training Oracle expert")
    exp_clf = experiment_utils.set_classifier(args.classifier, parameter=args.expert_penalty)

    if not args.fulloracle:
        print "Training expert documents:%s" % len(expert_data.oracle.train.data)
        labels, sent_train = experiment_utils.split_data_sentences(expert_data.oracle.train, sent_detector, vct, limit=args.limit)

        expert_data.oracle.train.data = sent_train
        expert_data.oracle.train.target = np.array(labels)
        expert_data.oracle.train.bow = vct.transform(expert_data.oracle.train.data)

        exp_clf.fit(expert_data.oracle.train.bow, expert_data.oracle.train.target)
    else:
        # expert_data.data = np.concatenate((data.train.data, data.test.data))
        # expert_data.target = np.concatenate((data.train.target, data.test.target))
        expert_data.data =data.train.data
        expert_data.target = data.train.target
        expert_data.target_names = data.train.target_names
        labels, sent_train = experiment_utils.split_data_sentences(expert_data, sent_detector, vct, limit=args.limit)
        expert_data.bow = vct.transform(sent_train)
        expert_data.target = labels
        expert_data.data = sent_train
        exp_clf.fit(expert_data.bow, expert_data.target)
#.........這裏部分代碼省略.........
開發者ID:mramire8,項目名稱:active,代碼行數:103,代碼來源:sent_unc.py

示例4: main

# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import target [as 別名]
def main():
    accuracies = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = CountVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 3),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())
    vct_analizer = vct.build_tokenizer()

    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = max(100, args.fixk)

    if args.fixk < 0:
        args.fixk = None

    fixk_saved = "{0}{1}.p".format(args.train, args.fixk)

    try:
        print "Loading existing file... %s " % args.train
        fixk_file = open(fixk_saved, "rb")
        data = pickle.load(fixk_file)
        fixk_file.close()
        vectorizer = open("{0}vectorizer.p".format(args.train), "rb")
        vct = pickle.load(vectorizer)
        vectorizer.close()
    except (IOError, ValueError):
        print "Loading from scratch..."
        data = load_dataset(args.train, args.fixk, categories[0], vct, min_size, percent=.5)
        fixk_file = open(fixk_saved, "wb")
        pickle.dump(data, fixk_file)
        fixk_file.close()
        vectorizer = open("{0}vectorizer.p".format(args.train), "wb")
        pickle.dump(vct, vectorizer)
        vectorizer.close()

    # data = load_dataset(args.train, args.fixk, categories[0], vct, min_size)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    parameters = parse_parameters_mat(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__

    #### STUDENT CLASSIFIER
    clf = linear_model.LogisticRegression(penalty="l1", C=1)
    # clf = set_classifier(args.classifier)
    print "\nStudent Classifier: %s" % clf

    #### EXPERT CLASSIFIER

    exp_clf = linear_model.LogisticRegression(penalty='l1', C=args.expert_penalty)
    exp_clf.fit(data.test.bow, data.test.target)
    expert = baseexpert.NeutralityExpert(exp_clf, threshold=args.neutral_threshold,
                                         cost_function=cost_model.cost_function)
    print "\nExpert: %s " % expert

    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          min_size))
    print ("Anytime active learning experiment - use objective function to pick data")
    t0 = time.time()
    tac = []
    tau = []
    ### experiment starts
    for t in range(args.trials):
        trial_accu = []

        trial_aucs = []

        print "*" * 60
        print "Trial: %s" % t
        if args.student in "anyunc":
            student = randomsampling.AnytimeLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model)
        elif args.student in "lambda":
            student = randomsampling.AnytimeLearnerDiff(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model, lambda_value=args.lambda_value)
        elif args.student in "anyzero":
            student = randomsampling.AnytimeLearnerZeroUtility(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model)
#.........這裏部分代碼省略.........
開發者ID:mramire8,項目名稱:active,代碼行數:103,代碼來源:anytime.py

示例5: main

# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import target [as 別名]

#.........這裏部分代碼省略.........
        expert = baseexpert.LogFunctionExpert(model=accu_parameters, cost_function=cost_model.cost_function)
    elif "direct" in args.expert:
        expert = baseexpert.LookUpExpert(accuracy_value=accu_parameters, cost_function=cost_model.cost_function)
    else:
        raise Exception("We need a defined cost function options [fixed|log|linear]")
        #expert = baseexpert.TrueOracleExpert(cost_function=cost_model.cost_function)
    print "\nExpert: %s " % expert

    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200
    eval_range = 1 if (args.budget / evaluation_points) <= 0 else args.budget / evaluation_points
    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          50))

    t0 = time.time()
    ### experiment starts
    for t in range(args.trials):
        print "*" * 60
        print "Trial: %s" % t
        # TODO shuffle the data??
        #student = baselearner.BaseLearner(model=clf, cost_model=cost_model, accuracy_model=accuracy_model, budget=args.budget,
        #                                  seed=t)
        student = randomsampling.RandomSamplingLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t)
        print "\nStudent: %s " % student
        train_indices = []
        train_x = []
        train_y = []
        pool = Bunch()
        pool.data = data.train.bow.tocsr()   # full words, for training
        pool.fixk = data.train.bowk.tocsr()  # k words BOW for querying
        pool.target = data.train.target
        pool.predicted = []
        pool.kwords = np.array(data.train.kwords)  # k words
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        #for x in pool.fixk:
        #    print x.todense().sum()

        bootstrapped = False

        current_cost = 0
        iteration = 0
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:

            if not bootstrapped:
                ## random bootstrap
                #bt = randomsampling.BootstrapRandom(random_state=t * 10)

                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                print "Bootstrap: %s " % bt.__class__.__name__
                print
            else:
                query_index = student.pick_next(pool=pool, k=step_size)

            query = pool.fixk[query_index]  # query with k words

            query_size = [len(vct_analizer(x)) for x in pool.kwords[query_index]]

            #if query_size[0] >50:
開發者ID:mramire8,項目名稱:active,代碼行數:70,代碼來源:traintest.py

示例6: load_mask_images

# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import target [as 別名]
import numpy as np
from skimage import io
from sklearn.datasets.base import Bunch

from dip.load_data import load_image_files, load_mask_images
from dip.mask import bounding_rect_of_mask


datasets = load_mask_images()

data = []
for f, mask in zip(
        datasets.filenames,
        load_image_files(datasets.filenames),
        ):
    # rect: (min_x, max_x, min_y, max_x)
    rect = bounding_rect_of_mask(mask, negative=True)
    data.append(list(rect))
    print('{0}: {1}'.format(f, rect))

bunch = Bunch(name='mask rects')
bunch.data = np.array(data)
bunch.filenames = datasets.filenames
bunch.target = datasets.target
bunch.target_names = datasets.target_names
bunch.description = 'mask rects: (min_x, min_y, max_x, max_y)'

with gzip.open('rects.pkl.gz', 'wb') as f:
    pickle.dump(bunch, f)
開發者ID:wkentaro,項目名稱:d-image-pipeline,代碼行數:31,代碼來源:mask_to_rect.py

示例7: main

# 需要導入模塊: from sklearn.datasets.base import Bunch [as 別名]
# 或者: from sklearn.datasets.base.Bunch import target [as 別名]
def main():
    accuracies = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = CountVectorizer(encoding='latin-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 3),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())
    vct_analizer = vct.build_tokenizer()
    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = max(10, args.fixk)

    if args.fixk < 0:
        args.fixk = None

    # data = load_dataset(args.train, args.fixk, categories[0], vct, min_size, percent=.5)
    # fixk_saved = "{0}{1}.p".format(args.train, args.fixk)

    data, vct = load_from_file(args.train, categories, args.fixk, min_size, vct)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    #### COST MODEL
    parameters = parse_parameters_mat(args.cost_model)
    print "Cost Parameters %s" % parameters
    cost_model = set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__

    #### ACCURACY MODEL
    accu_parameters = parse_parameters_mat(args.accu_model)

    #### CLASSIFIER
    clf = set_classifier(args.classifier)
    print "\nClassifier: %s" % clf

    #### EXPERT MODEL

    if "fixed" in args.expert:
        expert = baseexpert.FixedAccuracyExpert(accuracy_value=accu_parameters[0],
                                                cost_function=cost_model.cost_function)  #average value of accuracy of the experts
    elif "true" in args.expert:
        expert = baseexpert.TrueOracleExpert(cost_function=cost_model.cost_function)
    elif "linear" in args.expert:
        #expert = baseexpert.LRFunctionExpert(model=[0.0019, 0.6363],cost_function=cost_model.cost_function)
        raise Exception("We do not know linear yet!!")
    elif "log" in args.expert:
        expert = baseexpert.LogFunctionExpert(model=accu_parameters, cost_function=cost_model.cost_function)
    elif "direct" in args.expert:
        expert = baseexpert.LookUpExpert(accuracy_value=accu_parameters, cost_function=cost_model.cost_function)
    elif "neutral" in args.expert:
        exp_clf = LogisticRegression(penalty='l1', C=1)
        exp_clf.fit(data.test.bow, data.test.target)
        expert = baseexpert.NeutralityExpert(exp_clf, threshold=args.neutral_threshold,
                                         cost_function=cost_model.cost_function)
    else:
        raise Exception("We need a defined cost function options [fixed|log|linear]")

    exp_clf = LogisticRegression(penalty='l1', C=args.expert_penalty)
    exp_clf.fit(data.test.bow, data.test.target)
    print "\nExpert: %s " % expert
    coef = exp_clf.coef_[0]
    # print_features(coef, vct.get_feature_names())
    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          50))

    t0 = time.time()
    tac = []
    tau = []
    ### experiment starts
    for t in range(args.trials):
        trial_accu = []

        trial_aucs = []

        print "*" * 60
        print "Trial: %s" % t
        if  args.student in "unc":
            student = randomsampling.UncertaintyLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t,
                                                        subpool=250)
        else:
            student = randomsampling.RandomSamplingLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t)

        print "\nStudent: %s " % student
#.........這裏部分代碼省略.........
開發者ID:mramire8,項目名稱:active,代碼行數:103,代碼來源:traintestLR.py


注:本文中的sklearn.datasets.base.Bunch.target方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。