當前位置: 首頁>>代碼示例>>Python>>正文


Python PLSRegression.transform方法代碼示例

本文整理匯總了Python中sklearn.cross_decomposition.PLSRegression.transform方法的典型用法代碼示例。如果您正苦於以下問題:Python PLSRegression.transform方法的具體用法?Python PLSRegression.transform怎麽用?Python PLSRegression.transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.cross_decomposition.PLSRegression的用法示例。


在下文中一共展示了PLSRegression.transform方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit_base_model

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
def fit_base_model(classifiers, fully, dummyY, trainx, testx):
    """ Takes a list of classifiers and/or PLS regression and
    does dimension reduction by returning the predictions of the classifiers
    or first two scores of the PLS regression on bootstrapped subsamples of
    the data."""

    trainProbs = []
    testProbs = []

    iterations = 0
    for clf in classifiers:
        for i in range(clf[1]):
            iterations += 1
            print(iterations)
            print(clf[0])
            train_rows = np.random.choice(trainx.shape[0],
                                          round(trainx.shape[0] * base_prop),
                                          True)
            oob_rows = list(set(range(trainx.shape[0])) - set(train_rows))
            print(len(train_rows))
            print(len(oob_rows))
            x = trainx[train_rows, :]
            if clf[0] == 'PLS':
                y = dummyY[train_rows, :]
                mod = PLSRegression().fit(x, y)
                trainscores = mod.transform(trainx)
                testscores = mod.transform(testx)
                trainProbs.append(trainscores[:, 0])
                trainProbs.append(trainscores[:, 1])
                testProbs.append(testscores[:, 0])
                testProbs.append(testscores[:, 1])
            else:
                y = fully[train_rows]
                print('\t Fitting model...')
                mod = clf[0].fit(x, y)
                print('\t Predicting training results...')
                tpreds = mod.predict_proba(trainx)
                trainProbs.append(list(tpreds[:, 1]))
                print('\t Predicting test results...')
                testProbs.append(list(mod.predict_proba(testx)[:, 1]))
                print('\t OOB score: ' + str(log_loss(fully[oob_rows],
                                                      tpreds[oob_rows, :])))
    return trainProbs, testProbs
開發者ID:bacovcin,項目名稱:KaggleScripts,代碼行數:45,代碼來源:stacking.py

示例2: do_pls

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
def do_pls(X, Y):
    pls2 = PLSRegression(n_components=2)
    pls2.fit(X,Y)
    out = pls2.transform(X)
    print(out)
    print(out.shape)

    plt.title("PLS2")
    plt.xlabel("PL1")
    plt.ylabel("PL2")
    plt.grid();
    plt.scatter(out[:, 0], out[:, 1], c=Y, cmap='viridis')
    plt.savefig('pls.png', dpi=125)
開發者ID:flikka,項目名稱:ML-examples,代碼行數:15,代碼來源:multivariate.py

示例3: pls_approach

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
def pls_approach():
    from sklearn.cross_decomposition import PLSRegression

    (X, Y), cities = pull_xy_data()

    pls = PLSRegression()
    pls.fit(X, Y)

    plsX, plsY = pls.transform(X, Y)

    plot(plsX, cities, ["Lat01", "Lat02", "Lat03"], ellipse_sigma=1)

    return "OK What Now?"
開發者ID:csxeba,項目名稱:NitaGeo,代碼行數:15,代碼來源:canonics.py

示例4: hacerPLS

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
def hacerPLS(X,Y):
    pls_wild_b = PLSRegression(n_components = 9) 
    pls_wild_b.fit(X,Y)
    Z = pls_wild_b.transform(X)
    scores = list() 
    scores_std = list()
    n_features = np.shape(X)[1]
    
    X,X_test_tot, Y, Y_test_tot = cross_validation.train_test_split(X,Y,test_size = 0.5,random_state = 0)
    N = np.shape(X)[0]
    
    for num_comp in range(n_features):
        kf = KFold(N,n_folds = 10)
        aux_scores = list()
        for train, test in kf:
            X_train, X_test, y_train, y_test = X[train], X[test], Y[train], Y[test]
              
            if num_comp == 0:
                y_pred = np.mean(y_test)
                y_pred = y_pred* np.ones(np.shape(y_test))
                aux_scores.append(metrics.mean_squared_error(y_test,y_pred))
            
            else:
                pls_foo = PLSRegression(n_components = num_comp)                        
                pls_foo.fit(X_train,y_train)
                y_pred = pls_foo.predict(X_test)
            
                #obtaing the score
                this_score = metrics.mean_squared_error(y_test,y_pred)
                aux_scores.append(this_score)
                
        scores.append(np.mean(aux_scores))
        scores_std.append(np.std(aux_scores))
    
    plt.plot(scores)
    xlabel('Componentes')
    ylabel("$MSE$")
    title("Animales PLS")
    plt.show()
    
    num_comp = np.argmin(scores)
    
    pls_pred = PLSRegression(n_components =2)
    pls_pred.fit(X,Y)
    y_pred_test = pls_pred.predict(X_test_tot)
    
    print "MSE test = " + str(metrics.mean_squared_error(Y_test_tot,y_pred_test))
開發者ID:locobiedma,項目名稱:TFG-carlos-biedma-tapia,代碼行數:49,代碼來源:patogenos.py

示例5: reduce_PLS

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
def reduce_PLS(dataframe):
    PLS_file="data/pls_structure.pickle"
    selectedcolumn=[x for x in dataframe.columns if x not in ["id","click","device_id","device_ip"]]
    X=np.array(dataframe[selectedcolumn])
    y=np.array(dataframe["click"])
    if os.path.exists(PLS_file):
        stand_PLS=pickle.load(open(PLS_file,'rb'))
        print "PLS structure is loaded."
    else:
        stand_PLS=PLSRegression(n_components=10,scale=True)
        stand_PLS.fit(X, y[:,np.newaxis])
        stand_PLS.y_scores_=None
        stand_PLS.x_scores_=None
        pickle.dump(stand_PLS,open(PLS_file,"wb"))
        print "PLS transform structure is stored."
    T=stand_PLS.transform(X)
    print "PLS transformation is performed."
    return T
開發者ID:snaillians,項目名稱:kaggle-click,代碼行數:20,代碼來源:click_utilities.py

示例6: print

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
y = dataset["target"]

# Center each feature and scale the variance to be unitary
X = preprocessing.scale(X)

# Compute the variance for each column
print(numpy.var(X, 0).sum())

# Now use PCA using 3 components
pca = PCA(3)
X2 = pca.fit_transform(X)
print(numpy.var(X2, 0).sum())

pls = PLSRegression(3)
pls.fit(X, y)
X2 = pls.transform(X)
print(numpy.var(X2, 0).sum())

# Make predictions using an SVM with PCA and PLS
pca_error = 0
pls_error = 0
n_folds = 10

svc = LinearSVC()

for train_inds, test_inds in KFold(X.shape[0], n_folds=n_folds):
    X_train, X_test = X[train_inds], X[test_inds]
    y_train, y_test = y[train_inds], y[test_inds]

    # Use PCA and then classify using an SVM
    X_train2 = pca.fit_transform(X_train)
開發者ID:charanpald,項目名稱:tyre-hug,代碼行數:33,代碼來源:feexp.py

示例7: PLSRegression

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
        plt.ylabel('1st component')
    elif i == 1:
        plt.ylabel('2nd component')
    else:
        plt.ylabel('3rd component')
    axis_c = plt.gca()
    axis_c.set_xticklabels(wild_boar_ddbb['header'][3:],fontsize = 7)
    axis_c.set_xticks(axis_c.get_xticks() + 0.5)
    print "dentro del bucleeeeeeeeeee"

#Select the number of components using CV
#%%
##PLSR
pls_wild_b = PLSRegression(n_components = 3)
pls_wild_b.fit(X_train_prepro,Y_train)
X_train_pls_proj = pls_wild_b.transform(X_train_prepro)
print("loadings")

for i in range(pls_wild_b.n_components):
    plt.figure()
    plt.bar(np.arange(np.shape(X_train_prepro)[1]), pls_wild_b.x_loadings_[:,i])
    if i == 0:
        plt.ylabel('PLS 1st component')
    elif i == 1:
        plt.ylabel('PLS2nd component')
    else:
        plt.ylabel('PLS 3rd component')
    axis_c = plt.gca()
    axis_c.set_xticklabels(wild_boar_ddbb['header'][3:],fontsize = 7)
    axis_c.set_xticks(axis_c.get_xticks() + 0.5)
    
開發者ID:locobiedma,項目名稱:TFG-carlos-biedma-tapia,代碼行數:32,代碼來源:lab6.7.2.py

示例8: float

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
	    #print "yp_t_not ", yp_t_not.shape
	    pls.fit(Xp_t,yp_t_not.astype(int))
	    yp_new = pls.predict(Xp_t, copy=True)
	    yp_pred = (yp_new[:,0] > yp_new[:,1]).astype(int)
	    yp_t = yp_t.astype(int)
	    #print y_new,y_pred, y_t
	    error = ((yp_t - yp_pred) ** 2).sum()
   	    print "PLS Training error " , float(error)/yp_t.shape[0]
 	    yp_new = pls.predict(Xp_v, copy=True)
	    yp_pred = (yp_new[:,0] > yp_new[:,1]).astype(int)
	    #print y_new, y_pred, y_v
	    #print ((y_v - y_pred) ** 2).sum(), y_v.shape[0]
	    error = ((yp_v - yp_pred) ** 2).sum()
	    print "PLS Validation error " , float(error)/yp_v.shape[0]

	    X_new = pls.transform(X)
	    rf = RandomForestClassifier(n_estimators=500, max_depth=None, max_features=int(math.sqrt(n_components)), min_samples_split=100, random_state=144, n_jobs=4)
	    #print "shapes ", X_new.shape, y.shape
	    #print X_new,y
            X_t, X_v, y_t, y_v = tts(X_new,yd,train_size=0.85)

	    rf.fit(X_t, y_t)
            print "Random Forest Classifier: ", rf.get_params()
	    print "Covariance Classifier Training score: ", rf.score(X_t, y_t)
	    print "Covariance Classifier Validation score: ", rf.score(X_v, y_v)
	    #print "Class prob: ", zip(rf.predict_proba(X_v), y_v)

            sample_weights = rf.predict_proba(pls.transform(Xp_t))[:,1]
	    print sample_weights.shape
	    sample_weights = abs(sample_weights-0.5)
開發者ID:choudharydhruv,項目名稱:dec-meg-2014,代碼行數:32,代碼來源:cov_shift.py

示例9: enumerate

# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import transform [as 別名]
    plt.xlim(1,np.amax(nComponents))
    plt.title('PLS Cannonical accuracy')
    plt.xlabel('Number of components')
    plt.ylabel('accuracy')
    plt.legend (['LR','LDA','GNB','Linear SVM','rbf SVM'],loc='lower right')
    plt.grid(True)

if (0):
    #%% PLS Regression
    nComponents = np.arange(1,nClasses+1)
    plsRegScores = np.zeros((5,np.alen(nComponents)))
    for i,n in enumerate(nComponents):
        plsReg = PLSRegression(n_components=n)
        plsReg.fit(Xtrain,Ytrain)
        XtrainT = plsReg.transform(Xtrain)
        XtestT = plsReg.transform(Xtest)
        plsRegScores[:,i] = util.classify(XtrainT,XtestT,labelsTrain,labelsTest)

    
    plsReg = PLSRegression(n_components=2)
    plsReg.fit(Xtrain,Ytrain)
    xt = plsReg.transform(Xtrain)
    fig = plt.figure()
    util.plotData(fig,xt,labelsTrain,classColors)
    plt.title('First 2 components of projected data')
    

    #%% Plot accuracies for PLSSVD 
    plt.figure()
    for i in range (5):
開發者ID:manuwhs,項目名稱:Trapyng,代碼行數:32,代碼來源:baseFeatureExtractionLib.py


注:本文中的sklearn.cross_decomposition.PLSRegression.transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。