本文整理匯總了Python中sklearn.cross_decomposition.PLSRegression.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python PLSRegression.fit方法的具體用法?Python PLSRegression.fit怎麽用?Python PLSRegression.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.cross_decomposition.PLSRegression
的用法示例。
在下文中一共展示了PLSRegression.fit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: PLSCrossValidation
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def PLSCrossValidation(n_components, trainSet, validationSet):
pls = PLSRegression(n_components=n_components)
pls.fit(trainSet[predictorList], trainSet['Apps'])
predictPls = pls.predict(validationSet[predictorList])
different = predictPls.flat - validationSet['Apps']
error_rate = np.mean(different ** 2)
return error_rate
示例2: Training
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def Training(df,seed, yratio, xratio, index = 1):
snp_matrix = np.array(df.values)
xdim, ydim = snp_matrix.shape
ydimlist = range(0,ydim)
xdimlist = range(0,xdim)
random.seed(seed)
random.shuffle(ydimlist) # shuffle the individuals
random.shuffle(xdimlist) # shuffle the SNPs
accuracy = 0
snp_matrix_shuffle = np.copy(snp_matrix[:,ydimlist])
snp_matrix_shuffle = np.copy(snp_matrix[xdimlist,:])
snp_matrix_train = snp_matrix_shuffle[:,0:int(ydim*yratio)]
snp_matrix_test = snp_matrix_shuffle[:,int(ydim*yratio):]
snp_matrix_train_x = snp_matrix_train[0:int(xdim*xratio),:]
snp_matrix_test_x = snp_matrix_test[0:int(xdim*xratio),:]
for i in range(int(xdim*xratio), xdim):
snp_matrix_train_y = snp_matrix_train[i,:]
snp_matrix_test_y = snp_matrix_test[i,:]
if index != 7:
if index == 1:
clf = AdaBoostClassifier(n_estimators= 100)
elif index == 2:
clf = RandomForestClassifier(n_estimators=100)
elif index == 3:
clf = linear_model.LogisticRegression(C=1e5)
elif index == 4:
clf = svm.SVC(kernel = 'rbf')
elif index == 5:
clf = svm.SVC(kernel = 'poly')
else:
clf = svm.SVC(kernel = 'linear')
clf = clf.fit(snp_matrix_train_x.T, snp_matrix_train_y)
Y_pred = clf.predict(snp_matrix_test_x.T)
prediction = snp_matrix_test_y - Y_pred
wrong = np.count_nonzero(prediction)
tmp = 1 - (wrong + 0.0) / len(prediction)
print tmp
accuracy += tmp
accuracy = accuracy / (xdim - int(xdim*xratio))
if index == 7:
pls2 = PLSRegression(n_components = 50, scale=False, max_iter=1000)
snp_matrix_train_y = snp_matrix_train[int(xdim*xratio):,:]
pls2.fit(snp_matrix_train_x.T,snp_matrix_train_y.T)
snp_matrix_test_x = snp_matrix_test[0:int(xdim*xratio),:]
snp_matrix_test_y = snp_matrix_test[int(xdim*xratio):,:]
Y_pred = transform(pls2.predict(snp_matrix_test_x.T))
prediction = snp_matrix_test_y - Y_pred.T
xdim, ydim = prediction.shape
wrong = np.count_nonzero(prediction)
accuracy = 1 - wrong / (xdim * ydim + 0.0)
return accuracy
示例3: fit
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def fit(predictors, predictands, log=False, **kwargs):
model = PLSRegression(n_components=2)
try:
model.fit(predictors, predictands)
except:
return None
return model
示例4: trainmodels
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def trainmodels(m, x, y, iter=1000):
'''For the model type m, train a model on x->y using built-in CV to
parameterize. Return both this model and an unfit model that can be used for CV.
Note for PLS we cheat a little bit since there isn't a built-in CV trainer.
'''
if m == 'pls':
#have to manually cross-validate to choose number of components
kf = KFold(len(y), n_folds=3)
bestscore = -10000
besti = 0
for i in xrange(1,min(100,len(x[0]))):
#try larger number of components until average CV perf decreases
pls = PLSRegression(i)
scores = []
#TODO: parallelize below
for train,test in kf:
xtrain = x[train]
ytrain = y[train]
xtest = x[test]
ytest = y[test]
pls.fit(xtrain,ytrain)
score = scoremodel(pls,xtest,ytest)
scores.append(score)
ave = np.mean(scores)
if ave < bestscore*0.95: #getting significantly worse
break
elif ave > bestscore:
bestscore = ave
besti = i
model = PLSRegression(besti)
model.fit(x,y)
unfit = PLSRegression(besti) #choose number of components using full data - iffy
print "PLS components =",besti
elif m == 'lasso':
model = LassoCV(n_jobs=-1,max_iter=iter)
model.fit(x,y)
unfit = LassoCV(n_jobs=-1,max_iter=iter) #(alpha=model.alpha_)
print "LASSO alpha =",model.alpha_
return (model,unfit)
elif m == 'ridge':
model = RidgeCV()
model.fit(x,y)
print "Ridge alpha =",model.alpha_
unfit = RidgeCV()
else:
model = ElasticNetCV(n_jobs=-1,l1_ratio=[.1, .5, .7, .9, .95, .99, 1],max_iter=iter)
model.fit(x,y)
print "Elastic alpha =",model.alpha_," l1_ratio =",model.l1_ratio_
unfit = ElasticNetCV(n_jobs=-1,max_iter=iter)
return (model,unfit)
示例5: get_correlations
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def get_correlations(param, spec, wave):
'''Returns correlations between spec and params by wavelengths'''
# using PLS
pls = PLSRegression(10)
pls.fit(spec, param)
#get corretalions
nparam = param.shape[1]
cor = pls.coefs*np.asarray([pls.x_std_]*nparam).T
cor /= np.tile(pls.y_std_, (cor.shape[0],1))
return cor
示例6: do_pls
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def do_pls(X, Y):
pls2 = PLSRegression(n_components=2)
pls2.fit(X,Y)
out = pls2.transform(X)
print(out)
print(out.shape)
plt.title("PLS2")
plt.xlabel("PL1")
plt.ylabel("PL2")
plt.grid();
plt.scatter(out[:, 0], out[:, 1], c=Y, cmap='viridis')
plt.savefig('pls.png', dpi=125)
示例7: pls_approach
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def pls_approach():
from sklearn.cross_decomposition import PLSRegression
(X, Y), cities = pull_xy_data()
pls = PLSRegression()
pls.fit(X, Y)
plsX, plsY = pls.transform(X, Y)
plot(plsX, cities, ["Lat01", "Lat02", "Lat03"], ellipse_sigma=1)
return "OK What Now?"
示例8: __init__
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
class PLSPredictor:
def __init__(self):
self.pls2 = PLSRegression(n_components=2,
scale=True,
max_iter=500,
tol=1e-06,
copy=True)
def predict(self, values):
self.pls2.predict(values)
def train(self, measured_values, screen_points):
self.pls2.fit(measured_values, screen_points)
示例9: __one_pls
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def __one_pls(self, cat):
np.seterr(all='raise')
lcat = np.zeros(self.train_set['labels'].size)
lcat[self.train_set['labels'] != cat] = -1
lcat[self.train_set['labels'] == cat] = +1
pls = PLSRegression(n_components=2, scale=False)
pls.fit(self.train_set['data'], lcat)
return pls
示例10: build_model
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def build_model(X, y):
# gbr = GradientBoostingRegressor(learning_rate= 0.03, n_estimators=2000, max_depth=8, subsample=0.9)
# rf = RandomForestRegressor(n_estimators=200)
# lr = LinearRegression(fit_intercept=True)
# knr = KNeighborsRegressor(n_neighbors=10, weights='uniform')
# svr = SVR(C=5.0, kernel='linear')
pls = PLSRegression(n_components=35)
return pls.fit(X, y)
示例11: reduce_PLS
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def reduce_PLS(dataframe):
PLS_file="data/pls_structure.pickle"
selectedcolumn=[x for x in dataframe.columns if x not in ["id","click","device_id","device_ip"]]
X=np.array(dataframe[selectedcolumn])
y=np.array(dataframe["click"])
if os.path.exists(PLS_file):
stand_PLS=pickle.load(open(PLS_file,'rb'))
print "PLS structure is loaded."
else:
stand_PLS=PLSRegression(n_components=10,scale=True)
stand_PLS.fit(X, y[:,np.newaxis])
stand_PLS.y_scores_=None
stand_PLS.x_scores_=None
pickle.dump(stand_PLS,open(PLS_file,"wb"))
print "PLS transform structure is stored."
T=stand_PLS.transform(X)
print "PLS transformation is performed."
return T
示例12: pls_regr
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def pls_regr(x, y):
from sklearn.cross_decomposition import PLSRegression
n = len(x[0])
if n < 2:
raise TypeError
score = -999999999999
pls = None
'''
for i in range(3, n):
pls2 = PLSRegression(n_components=i)
pls2.fit(x,y)
cscore = pls2.score(x, y)
#print i, cscore
if cscore > score:
pls = pls2
score = cscore
'''
pls = PLSRegression(n_components=5)
pls.fit(x,y)
return pls
示例13: lex_function_learning
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def lex_function_learning( class_name, hyper_vec ) :
#pls2 = KernelRidge( kernel = "rbf", gamma= 100)
#pls2 = KernelRidge( )
pls2 = PLSRegression(n_components=50, max_iter=5000)
X = extract_postive_features ( train_dataset[class_name][0], train_dataset[class_name][1] )
Y = []
for hypo_vec in X :
sub = hyper_vec-hypo_vec
Y.append(sub) # Target = difference vector ( Hypernym_vector - Hyponym_vector )
#Y.append(hyper_vec) # Target = Hypernym vector
pls2.fit( X, Y)
train_acc = pls2.score(X, Y)
print "class = ", class_name, "train len = ", len(X)
return pls2, train_acc, len(X)
示例14: train_PLSR
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def train_PLSR(x_filename, y_filename, model_filename, n):
"""
Train a PLSR model and save it to the model_filename.
X and Y matrices are read from x_filename and y_filename.
The no. of PLSR components is given by n.
"""
X = loadMatrix(x_filename)[0].todense()
Y = loadMatrix(y_filename)[0].todense()
if X.shape[0] != Y.shape[0]:
sys.stderr.write("X and Y must have equal number of rows!\n")
raise ValueError
sys.stderr.write("Learning PLSR...")
startTime = time.time()
pls2 = PLSRegression(copy=True, max_iter=10000, n_components=n, scale=True, tol=1e-06)
pls2.fit(X, Y)
model = open(model_filename, 'w')
pickle.dump(pls2, model, 1)
model.close()
endTime = time.time()
sys.stderr.write(" took %ss\n" % str(round(endTime-startTime, 2)))
pass
示例15: hacerPLS
# 需要導入模塊: from sklearn.cross_decomposition import PLSRegression [as 別名]
# 或者: from sklearn.cross_decomposition.PLSRegression import fit [as 別名]
def hacerPLS(X,Y):
pls_wild_b = PLSRegression(n_components = 9)
pls_wild_b.fit(X,Y)
Z = pls_wild_b.transform(X)
scores = list()
scores_std = list()
n_features = np.shape(X)[1]
X,X_test_tot, Y, Y_test_tot = cross_validation.train_test_split(X,Y,test_size = 0.5,random_state = 0)
N = np.shape(X)[0]
for num_comp in range(n_features):
kf = KFold(N,n_folds = 10)
aux_scores = list()
for train, test in kf:
X_train, X_test, y_train, y_test = X[train], X[test], Y[train], Y[test]
if num_comp == 0:
y_pred = np.mean(y_test)
y_pred = y_pred* np.ones(np.shape(y_test))
aux_scores.append(metrics.mean_squared_error(y_test,y_pred))
else:
pls_foo = PLSRegression(n_components = num_comp)
pls_foo.fit(X_train,y_train)
y_pred = pls_foo.predict(X_test)
#obtaing the score
this_score = metrics.mean_squared_error(y_test,y_pred)
aux_scores.append(this_score)
scores.append(np.mean(aux_scores))
scores_std.append(np.std(aux_scores))
plt.plot(scores)
xlabel('Componentes')
ylabel("$MSE$")
title("Animales PLS")
plt.show()
num_comp = np.argmin(scores)
pls_pred = PLSRegression(n_components =2)
pls_pred.fit(X,Y)
y_pred_test = pls_pred.predict(X_test_tot)
print "MSE test = " + str(metrics.mean_squared_error(Y_test_tot,y_pred_test))