當前位置: 首頁>>代碼示例>>Python>>正文


Python DataPHA.notice方法代碼示例

本文整理匯總了Python中sherpa.astro.data.DataPHA.notice方法的典型用法代碼示例。如果您正苦於以下問題:Python DataPHA.notice方法的具體用法?Python DataPHA.notice怎麽用?Python DataPHA.notice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sherpa.astro.data.DataPHA的用法示例。


在下文中一共展示了DataPHA.notice方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_arfmodelpha_call

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
def test_arfmodelpha_call(ignore):
    """What happens calling an arf with a pha?

    The ignore value indicates what channel to ignore (0 means
    nothing is ignored). The aim is to check edge effects,
    and as there are only a few channels, it was decided to
    test all channels.
    """

    # Note: the exposure is set in the PHA and ARF, but should not be
    #       used when evaluating the model; it's value has been
    #       set to a value that the test will fail it it is.
    #
    exposure = 200.1
    estep = 0.01
    egrid = np.arange(0.01, 0.06, estep)
    svals = [1.1, 1.2, 1.3, 1.4]
    specresp = np.asarray(svals)
    adata = create_arf(egrid[:-1], egrid[1:], specresp,
                       exposure=exposure)

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, 5, dtype=np.int16)
    counts = np.asarray([10, 5, 12, 7], dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_arf(adata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        de = estep * 0.9
        e0 = egrid[ignore]
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True, True, True, True]
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = ARFModelPHA(adata, pha, mdl)

    # The model is evaluated on the ARF grid, not whatever
    # is sent in. It is also integrated across the bins,
    # which is why there is a multiplication by the
    # grid width (for this constant model).
    #
    # Note that the filter doesn't change the grid.
    #
    de = egrid[1:] - egrid[:-1]
    expected = constant * np.asarray(svals) * de
    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:61,代碼來源:test_instrument.py

示例2: test_rspmodelpha_delta_call

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
def test_rspmodelpha_delta_call(ignore):
    """What happens calling a rsp with a pha (RMF is a delta fn)?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
    specresp[2:5] = 0.0
    specresp[16:19] = 3.2
    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        de = estep * 0.9
        e0 = egrid[ignore]
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # The model is evaluated on the RMF grid, not whatever
    # is sent in. It is also integrated across the bins,
    # which is why there is a multiplication by the
    # grid width (for this constant model).
    #
    # Note that the filter doesn't change the grid.
    #
    de = egrid[1:] - egrid[:-1]
    expected = constant * specresp * de
    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:58,代碼來源:test_instrument.py

示例3: test_rspmodelpha_matrix_call

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
def test_rspmodelpha_matrix_call(ignore):
    """What happens calling a rsp with a pha (RMF is a matrix)?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    rdata = create_non_delta_rmf()
    specresp = create_non_delta_specresp()
    elo = rdata.energ_lo
    ehi = rdata.energ_hi

    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    nchans = rdata.e_min.size

    constant = 22.3
    slope = -1.2
    mdl = Polynom1D('sloped')
    mdl.c0 = constant
    mdl.c1 = slope

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        e0 = rdata.e_min[ignore]
        e1 = rdata.e_max[ignore]
        de = 0.9 * (e1 - e0)
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # The filter does not change the grid
    modvals = specresp * mdl(rdata.energ_lo, rdata.energ_hi)
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:54,代碼來源:test_instrument.py

示例4: test_rmfmodelpha_matrix_call

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
def test_rmfmodelpha_matrix_call(ignore):
    """What happens calling an rmf (matrix) with a pha?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    rdata = create_non_delta_rmf()
    elo = rdata.e_min
    ehi = rdata.e_max
    nchans = elo.size

    constant = 12.2
    slope = 0.01
    mdl = Polynom1D('not-flat')
    mdl.c0 = constant
    mdl.c1 = slope

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        e0 = elo[ignore]
        e1 = ehi[ignore]
        de = 0.9 * (e1 - e0)
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RMFModelPHA(rdata, pha, mdl)

    # Note that the evaluation ignores any filter we've applied.
    # and the exposure time is not used.
    #
    modvals = mdl(rdata.energ_lo, rdata.energ_hi)
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:53,代碼來源:test_instrument.py

示例5: test_filter_energy_grid

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
class test_filter_energy_grid(SherpaTestCase):

    _notice = numpy.ones(46, dtype=bool)
    _notice[44:46]=False

    _ignore = numpy.zeros(46, dtype=bool)
    _ignore[14:33]=True

    _emin = numpy.array([
        1.46000006e-03,   2.48199999e-01,   3.06600004e-01,   4.67200011e-01,
        5.69400012e-01,   6.42400026e-01,   7.00800002e-01,   7.44599998e-01,
        7.88399994e-01,   8.17600012e-01,   8.61400008e-01,   8.90600026e-01,
        9.49000001e-01,   9.92799997e-01,   1.03659999e+00,   1.09500003e+00,
        1.13880002e+00,   1.19719994e+00,   1.28480005e+00,   1.40160000e+00,
        1.47459996e+00,   1.60599995e+00,   1.69360006e+00,   1.81040001e+00,
        1.89800000e+00,   1.94180000e+00,   2.02940011e+00,   2.08780003e+00,
        2.19000006e+00,   2.27760005e+00,   2.39439988e+00,   2.58419991e+00,
        2.71560001e+00,   2.86159992e+00,   3.08060002e+00,   3.38720012e+00,
        3.56240010e+00,   3.79600000e+00,   4.02960014e+00,   4.24860001e+00,
        4.71579981e+00,   5.02239990e+00,   5.37279987e+00,   5.89839983e+00,
        6.57000017e+00,   9.86960030e+00], numpy.float)

    _emax = numpy.array([
        0.2482    ,   0.3066    ,   0.46720001,   0.56940001,   0.64240003,
        0.7008    ,   0.7446    ,   0.78839999,   0.81760001,   0.86140001,
        0.89060003,   0.949     ,   0.9928    ,   1.03659999,   1.09500003,
        1.13880002,   1.19719994,   1.28480005,   1.4016    ,   1.47459996,
        1.60599995,   1.69360006,   1.81040001,   1.898     ,   1.9418    ,
        2.02940011,   2.08780003,   2.19000006,   2.27760005,   2.39439988,
        2.58419991,   2.71560001,   2.86159992,   3.08060002,   3.38720012,
        3.5624001 ,   3.796     ,   4.02960014,   4.24860001,   4.71579981,
        5.0223999 ,   5.37279987,   5.89839983,   6.57000017,   9.8696003 ,
        14.95040035], numpy.float)

    def setUp(self):
        self.old_level = logger.getEffectiveLevel()
        logger.setLevel(logging.ERROR)
        self.pha = DataPHA('', numpy.arange(46, dtype=float)+1.,
                           numpy.zeros(46),
                           bin_lo = self._emin, bin_hi = self._emax )
        self.pha.units="energy"

    def tearDown(self):
        logger.setLevel(self.old_level)

    def test_notice(self):
        #clear mask
        self.pha.notice()        
        self.pha.notice(0.0, 6.0)
        #self.assertEqual(self._notice, self.pha.mask)
        assert (self._notice==numpy.asarray(self.pha.mask)).all()


    def test_ignore(self):
        #clear mask
        self.pha.notice()
        self.pha.ignore(0.0, 1.0)
        self.pha.ignore(3.0, 15.0)
        #self.assertEqual(self._ignore, self.pha.mask)
        assert (self._ignore==numpy.asarray(self.pha.mask)).all()
開發者ID:ChandraCXC,項目名稱:sherpa,代碼行數:62,代碼來源:test_data.py

示例6: test_filter_wave_grid

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
class test_filter_wave_grid(SherpaTestCase):

    _notice = np.ones(16384, dtype=bool)
    _notice[8465:16384] = False

    _ignore = np.zeros(16384, dtype=bool)
    _ignore[14064:15984] = True

    _emin = np.arange(205.7875, 0.9875, -0.0125)

    _emax = _emin + 0.0125

    def setUp(self):
        self.old_level = logger.getEffectiveLevel()
        logger.setLevel(logging.ERROR)
        self.pha = DataPHA('', np.arange(16384, dtype=float) + 1,
                           np.zeros(16384),
                           bin_lo=self._emin,
                           bin_hi=self._emax)

    def tearDown(self):
        logger.setLevel(self.old_level)

    def test_notice(self):
        self.pha.units = 'wavelength'
        self.pha.notice()
        self.pha.notice(100.0, 225.0)
        assert (self._notice == np.asarray(self.pha.mask)).all()

    def test_ignore(self):
        self.pha.units = 'wavelength'
        self.pha.notice()
        self.pha.ignore(30.01, 225.0)
        self.pha.ignore(0.1, 6.0)
        assert (self._ignore == np.asarray(self.pha.mask)).all()
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:37,代碼來源:test_data.py

示例7: test_rmfmodelpha_delta_no_ebounds

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
def test_rmfmodelpha_delta_no_ebounds(analysis):
    """What happens calling an rmf with a pha and no EBOUNDS is set

    Ensure we can't filter on energy or wavelength since there's no
    EBOUNDS information. This behavior was seen when writing
    test_rmfmodelpha_call, so a test was written for it.
    """

    estep = 0.01
    egrid = np.arange(0.01, 0.06, estep)
    rdata = create_delta_rmf(egrid[:-1], egrid[1:])

    channels = np.arange(1, 5, dtype=np.int16)
    counts = np.asarray([10, 5, 12, 7], dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts)
    pha.set_rmf(rdata)

    pha.set_analysis(analysis)
    with pytest.raises(DataErr) as exc:
        pha.notice(0.025, 0.045, ignore=False)

    assert str(exc.value) == 'RMF does not specify energy bins'
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:24,代碼來源:test_instrument.py

示例8: test_filter_energy_grid_reversed

# 需要導入模塊: from sherpa.astro.data import DataPHA [as 別名]
# 或者: from sherpa.astro.data.DataPHA import notice [as 別名]
class test_filter_energy_grid_reversed(SherpaTestCase):

    _notice = numpy.zeros(204, dtype=bool)
    _notice[0:42]=True

    _ignore = numpy.ones(204, dtype=bool)
    _ignore[66:70]=False
    _ignore[0:17]=False

    _emin = numpy.array([
        2.39196181,  2.35973215,  2.34076023,  2.30973101,  2.2884388 ,
        2.25861454,  2.22371697,  2.20662117,  2.18140674,  2.14317489,
        2.12185216,  2.09055495,  2.06256914,  2.04509854,  2.02788448,
        2.00133967,  1.97772908,  1.96379483,  1.93868744,  1.91855776,
        1.89444292,  1.87936974,  1.85819471,  1.84568763,  1.82923627,
        1.78920078,  1.77360916,  1.76206875,  1.74499893,  1.73006463,
        1.70084822,  1.6883322 ,  1.67772949,  1.65171933,  1.63476169,
        1.59687376,  1.5745424 ,  1.55736887,  1.54051399,  1.52546024,
        1.50043869,  1.48890531,  1.47329199,  1.46072423,  1.44289041,
        1.43344045,  1.41616774,  1.40441585,  1.3979584 ,  1.38773119,
        1.37138033,  1.35170007,  1.33725214,  1.33249414,  1.31839108,
        1.30797839,  1.29657102,  1.28310275,  1.26550889,  1.25471842,
        1.24513853,  1.23672664,  1.22944438,  1.21509433,  1.21003771,
        1.20401597,  1.19705439,  1.18722582,  0.90194935,  0.89519638,
        0.88912934,  0.88492262,  0.87837797,  0.87366825,  0.8689999 ,
        0.86437255,  0.85693878,  0.84793305,  0.84404182,  0.83580172,
        0.82876647,  0.82395256,  0.81865752,  0.81185687,  0.80004948,
        0.79450154,  0.78852075,  0.77920061,  0.77340651,  0.76626247,
        0.76202762,  0.75783074,  0.75413191,  0.74727529,  0.74321008,
        0.73474538,  0.73166627,  0.72687   ,  0.71785438,  0.71488959,
        0.71068853,  0.70199603,  0.69832331,  0.69387686,  0.68788701,
        0.68354762,  0.67847627,  0.67117327,  0.66512167,  0.66175646,
        0.65620857,  0.6518243 ,  0.64605182,  0.64142239,  0.63754696,
        0.63128632,  0.62478495,  0.62006336,  0.61440694,  0.60915887,
        0.60591549,  0.60078359,  0.5938406 ,  0.59103745,  0.58488411,
        0.58124125,  0.57883304,  0.57406437,  0.57023615,  0.56442606,
        0.56041539,  0.55701393,  0.55392498,  0.55030966,  0.54346251,
        0.53728294,  0.53515989,  0.5291304 ,  0.52448714,  0.51990861,
        0.51589233,  0.50996011,  0.50509953,  0.49889025,  0.49512967,
        0.49003205,  0.48888513,  0.48524383,  0.48164544,  0.47720695,
        0.47283325,  0.46916556,  0.46660379,  0.46280268,  0.45925769,
        0.45514211,  0.45290345,  0.44987884,  0.44589564,  0.44333643,
        0.44099477,  0.43790293,  0.43446559,  0.43088335,  0.42605683,
        0.42131537,  0.41826019,  0.41506338,  0.41155648,  0.40895697,
        0.40502119,  0.40400422,  0.40164718,  0.39864835,  0.39584854,
        0.39389083,  0.39130434,  0.38890362,  0.38526753,  0.38292497,
        0.38075879,  0.37891743,  0.37648395,  0.37557775,  0.37347662,
        0.37154216,  0.36742872,  0.3641032 ,  0.36167556,  0.35983625,
        0.35634032,  0.35248783,  0.35085678,  0.34843227,  0.34669766,
        0.34418666,  0.33912122,  0.33720407,  0.33505177,  0.33279634,
        0.33081138,  0.32847831,  0.32592943,  0.3111549 ], numpy.float)

    _emax = numpy.array([
        3.06803656,  2.39196181,  2.35973215,  2.34076023,  2.30973101,
        2.2884388 ,  2.25861454,  2.22371697,  2.20662117,  2.18140674,
        2.14317489,  2.12185216,  2.09055495,  2.06256914,  2.04509854,
        2.02788448,  2.00133967,  1.97772908,  1.96379483,  1.93868744,
        1.91855776,  1.89444292,  1.87936974,  1.85819471,  1.84568763,
        1.82923627,  1.78920078,  1.77360916,  1.76206875,  1.74499893,
        1.73006463,  1.70084822,  1.6883322 ,  1.67772949,  1.65171933,
        1.63476169,  1.59687376,  1.5745424 ,  1.55736887,  1.54051399,
        1.52546024,  1.50043869,  1.48890531,  1.47329199,  1.46072423,
        1.44289041,  1.43344045,  1.41616774,  1.40441585,  1.3979584 ,
        1.38773119,  1.37138033,  1.35170007,  1.33725214,  1.33249414,
        1.31839108,  1.30797839,  1.29657102,  1.28310275,  1.26550889,
        1.25471842,  1.24513853,  1.23672664,  1.22944438,  1.21509433,
        1.21003771,  1.20401597,  1.19705439,  1.18722582,  0.90194935,
        0.89519638,  0.88912934,  0.88492262,  0.87837797,  0.87366825,
        0.8689999 ,  0.86437255,  0.85693878,  0.84793305,  0.84404182,
        0.83580172,  0.82876647,  0.82395256,  0.81865752,  0.81185687,
        0.80004948,  0.79450154,  0.78852075,  0.77920061,  0.77340651,
        0.76626247,  0.76202762,  0.75783074,  0.75413191,  0.74727529,
        0.74321008,  0.73474538,  0.73166627,  0.72687   ,  0.71785438,
        0.71488959,  0.71068853,  0.70199603,  0.69832331,  0.69387686,
        0.68788701,  0.68354762,  0.67847627,  0.67117327,  0.66512167,
        0.66175646,  0.65620857,  0.6518243 ,  0.64605182,  0.64142239,
        0.63754696,  0.63128632,  0.62478495,  0.62006336,  0.61440694,
        0.60915887,  0.60591549,  0.60078359,  0.5938406 ,  0.59103745,
        0.58488411,  0.58124125,  0.57883304,  0.57406437,  0.57023615,
        0.56442606,  0.56041539,  0.55701393,  0.55392498,  0.55030966,
        0.54346251,  0.53728294,  0.53515989,  0.5291304 ,  0.52448714,
        0.51990861,  0.51589233,  0.50996011,  0.50509953,  0.49889025,
        0.49512967,  0.49003205,  0.48888513,  0.48524383,  0.48164544,
        0.47720695,  0.47283325,  0.46916556,  0.46660379,  0.46280268,
        0.45925769,  0.45514211,  0.45290345,  0.44987884,  0.44589564,
        0.44333643,  0.44099477,  0.43790293,  0.43446559,  0.43088335,
        0.42605683,  0.42131537,  0.41826019,  0.41506338,  0.41155648,
        0.40895697,  0.40502119,  0.40400422,  0.40164718,  0.39864835,
        0.39584854,  0.39389083,  0.39130434,  0.38890362,  0.38526753,
        0.38292497,  0.38075879,  0.37891743,  0.37648395,  0.37557775,
        0.37347662,  0.37154216,  0.36742872,  0.3641032 ,  0.36167556,
        0.35983625,  0.35634032,  0.35248783,  0.35085678,  0.34843227,
        0.34669766,  0.34418666,  0.33912122,  0.33720407,  0.33505177,
        0.33279634,  0.33081138,  0.32847831,  0.32592943], numpy.float)


    def setUp(self):
        #self.old_level = logger.getEffectiveLevel()
        #logger.setLevel(logging.ERROR)
        self.pha = DataPHA('', numpy.arange(204, dtype=float)+1.,
#.........這裏部分代碼省略.........
開發者ID:ChandraCXC,項目名稱:sherpa,代碼行數:103,代碼來源:test_data.py


注:本文中的sherpa.astro.data.DataPHA.notice方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。