本文整理匯總了Python中sherpa.astro.data.DataPHA類的典型用法代碼示例。如果您正苦於以下問題:Python DataPHA類的具體用法?Python DataPHA怎麽用?Python DataPHA使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了DataPHA類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_filter_energy_grid
class test_filter_energy_grid(SherpaTestCase):
_notice = numpy.ones(46, dtype=bool)
_notice[44:46]=False
_ignore = numpy.zeros(46, dtype=bool)
_ignore[14:33]=True
_emin = numpy.array([
1.46000006e-03, 2.48199999e-01, 3.06600004e-01, 4.67200011e-01,
5.69400012e-01, 6.42400026e-01, 7.00800002e-01, 7.44599998e-01,
7.88399994e-01, 8.17600012e-01, 8.61400008e-01, 8.90600026e-01,
9.49000001e-01, 9.92799997e-01, 1.03659999e+00, 1.09500003e+00,
1.13880002e+00, 1.19719994e+00, 1.28480005e+00, 1.40160000e+00,
1.47459996e+00, 1.60599995e+00, 1.69360006e+00, 1.81040001e+00,
1.89800000e+00, 1.94180000e+00, 2.02940011e+00, 2.08780003e+00,
2.19000006e+00, 2.27760005e+00, 2.39439988e+00, 2.58419991e+00,
2.71560001e+00, 2.86159992e+00, 3.08060002e+00, 3.38720012e+00,
3.56240010e+00, 3.79600000e+00, 4.02960014e+00, 4.24860001e+00,
4.71579981e+00, 5.02239990e+00, 5.37279987e+00, 5.89839983e+00,
6.57000017e+00, 9.86960030e+00], numpy.float)
_emax = numpy.array([
0.2482 , 0.3066 , 0.46720001, 0.56940001, 0.64240003,
0.7008 , 0.7446 , 0.78839999, 0.81760001, 0.86140001,
0.89060003, 0.949 , 0.9928 , 1.03659999, 1.09500003,
1.13880002, 1.19719994, 1.28480005, 1.4016 , 1.47459996,
1.60599995, 1.69360006, 1.81040001, 1.898 , 1.9418 ,
2.02940011, 2.08780003, 2.19000006, 2.27760005, 2.39439988,
2.58419991, 2.71560001, 2.86159992, 3.08060002, 3.38720012,
3.5624001 , 3.796 , 4.02960014, 4.24860001, 4.71579981,
5.0223999 , 5.37279987, 5.89839983, 6.57000017, 9.8696003 ,
14.95040035], numpy.float)
def setUp(self):
self.old_level = logger.getEffectiveLevel()
logger.setLevel(logging.ERROR)
self.pha = DataPHA('', numpy.arange(46, dtype=float)+1.,
numpy.zeros(46),
bin_lo = self._emin, bin_hi = self._emax )
self.pha.units="energy"
def tearDown(self):
logger.setLevel(self.old_level)
def test_notice(self):
#clear mask
self.pha.notice()
self.pha.notice(0.0, 6.0)
#self.assertEqual(self._notice, self.pha.mask)
assert (self._notice==numpy.asarray(self.pha.mask)).all()
def test_ignore(self):
#clear mask
self.pha.notice()
self.pha.ignore(0.0, 1.0)
self.pha.ignore(3.0, 15.0)
#self.assertEqual(self._ignore, self.pha.mask)
assert (self._ignore==numpy.asarray(self.pha.mask)).all()
示例2: test_filter_wave_grid
class test_filter_wave_grid(SherpaTestCase):
_notice = np.ones(16384, dtype=bool)
_notice[8465:16384] = False
_ignore = np.zeros(16384, dtype=bool)
_ignore[14064:15984] = True
_emin = np.arange(205.7875, 0.9875, -0.0125)
_emax = _emin + 0.0125
def setUp(self):
self.old_level = logger.getEffectiveLevel()
logger.setLevel(logging.ERROR)
self.pha = DataPHA('', np.arange(16384, dtype=float) + 1,
np.zeros(16384),
bin_lo=self._emin,
bin_hi=self._emax)
def tearDown(self):
logger.setLevel(self.old_level)
def test_notice(self):
self.pha.units = 'wavelength'
self.pha.notice()
self.pha.notice(100.0, 225.0)
assert (self._notice == np.asarray(self.pha.mask)).all()
def test_ignore(self):
self.pha.units = 'wavelength'
self.pha.notice()
self.pha.ignore(30.01, 225.0)
self.pha.ignore(0.1, 6.0)
assert (self._ignore == np.asarray(self.pha.mask)).all()
示例3: test_rsp_normf_error
def test_rsp_normf_error(analysis):
"""Check that an error is raised on set_analysis
"""
exposure = 200.1
# rdata is only used to define the grids
rdata = create_non_delta_rmf()
specresp = create_non_delta_specresp()
adata = create_arf(rdata.energ_lo,
rdata.energ_hi,
specresp,
exposure=exposure)
nchans = rdata.e_min.size
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
pha.set_arf(adata)
with pytest.raises(DataErr) as exc:
pha.set_analysis(analysis)
emsg = "response incomplete for dataset test-pha, " + \
"check the instrument model"
assert str(exc.value) == emsg
示例4: calc_wstat_sherpa
def calc_wstat_sherpa(mu_sig, n_on, n_off, alpha):
import sherpa.stats as ss
from sherpa.astro.data import DataPHA
from sherpa.models import Const1D
wstat = ss.WStat()
model = Const1D()
model.c0 = mu_sig
data = DataPHA(counts=np.atleast_1d(n_on),
name='dummy',
channel=np.atleast_1d(1),
backscal=1,
exposure=1)
background = DataPHA(counts=np.atleast_1d(n_off),
name='dummy background',
channel=np.atleast_1d(1),
backscal=np.atleast_1d(1. / alpha),
exposure=1)
data.set_background(background, 1)
# Docstring for ``calc_stat``
# https://github.com/sherpa/sherpa/blob/fe8508818662346cb6d9050ba676e23318e747dd/sherpa/stats/__init__.py#L219
stat = wstat.calc_stat(model=model, data=data)
print("Sherpa stat: {}".format(stat[0]))
print("Sherpa fvec: {}".format(stat[1]))
示例5: test_rsp_no_arf_matrix_call
def test_rsp_no_arf_matrix_call(analysis, phaexp):
"""Check out Response1D with matrix but no ARF
analysis is the analysis setting
arfexp determines whether the arf has an exposure time
phaexp determines whether the PHA has an exposure time
"""
if phaexp:
pha_exposure = 220.9
else:
pha_exposure = None
if phaexp:
exposure = pha_exposure
mdl_label = '({} * flat)'.format(exposure)
else:
exposure = 1.0
mdl_label = 'flat'
rdata = create_non_delta_rmf()
constant = 2.3
mdl = Const1D('flat')
mdl.c0 = constant
# Turn off integration on this model, so that it is not integrated
# across the bin width.
#
mdl.integrate = False
nchans = rdata.e_min.size
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=pha_exposure)
pha.set_rmf(rdata)
rsp = Response1D(pha)
wrapped = rsp(mdl)
assert isinstance(wrapped, ArithmeticModel)
expname = 'apply_rmf({})'.format(mdl_label)
assert wrapped.name == expname
modvals = exposure * constant * np.ones(rdata.energ_lo.size)
matrix = get_non_delta_matrix()
expected = np.matmul(modvals, matrix)
pha.set_analysis(analysis)
out = wrapped([4, 5])
assert_allclose(out, expected)
示例6: setUp
def setUp(self):
self.old_level = logger.getEffectiveLevel()
logger.setLevel(logging.ERROR)
self.pha = DataPHA('', np.arange(16384, dtype=float) + 1,
np.zeros(16384),
bin_lo=self._emin,
bin_hi=self._emax)
示例7: setUp
def setUp(self):
self.old_level = logger.getEffectiveLevel()
logger.setLevel(logging.ERROR)
self.pha = DataPHA('', numpy.arange(46, dtype=float)+1.,
numpy.zeros(46),
bin_lo = self._emin, bin_hi = self._emax )
self.pha.units="energy"
示例8: test_arfmodelpha_call
def test_arfmodelpha_call(ignore):
"""What happens calling an arf with a pha?
The ignore value indicates what channel to ignore (0 means
nothing is ignored). The aim is to check edge effects,
and as there are only a few channels, it was decided to
test all channels.
"""
# Note: the exposure is set in the PHA and ARF, but should not be
# used when evaluating the model; it's value has been
# set to a value that the test will fail it it is.
#
exposure = 200.1
estep = 0.01
egrid = np.arange(0.01, 0.06, estep)
svals = [1.1, 1.2, 1.3, 1.4]
specresp = np.asarray(svals)
adata = create_arf(egrid[:-1], egrid[1:], specresp,
exposure=exposure)
constant = 2.3
mdl = Const1D('flat')
mdl.c0 = constant
channels = np.arange(1, 5, dtype=np.int16)
counts = np.asarray([10, 5, 12, 7], dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
pha.set_arf(adata)
# force energy units (only needed if ignore is set)
pha.set_analysis('energy')
if ignore is not None:
de = estep * 0.9
e0 = egrid[ignore]
pha.notice(lo=e0, hi=e0 + de, ignore=True)
# The assert are intended to help people reading this
# code rather than being a useful check that the code
# is working.
mask = [True, True, True, True]
mask[ignore] = False
assert (pha.mask == mask).all()
wrapped = ARFModelPHA(adata, pha, mdl)
# The model is evaluated on the ARF grid, not whatever
# is sent in. It is also integrated across the bins,
# which is why there is a multiplication by the
# grid width (for this constant model).
#
# Note that the filter doesn't change the grid.
#
de = egrid[1:] - egrid[:-1]
expected = constant * np.asarray(svals) * de
out = wrapped([4, 5])
assert_allclose(out, expected)
示例9: test_rspmodelpha_delta_call_wave
def test_rspmodelpha_delta_call_wave():
"""What happens calling a rsp with a pha (RMF is a delta fn)? Wavelength.
Unlike the energy case no bins are ignored, as this code path
has already been tested.
"""
exposure = 200.1
estep = 0.025
egrid = np.arange(0.1, 0.8, estep)
elo = egrid[:-1]
ehi = egrid[1:]
specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
specresp[2:5] = 0.0
specresp[16:19] = 3.2
adata = create_arf(elo, ehi, specresp, exposure=exposure)
rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
nchans = elo.size
constant = 2.3
mdl = Const1D('flat')
mdl.c0 = constant
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
pha.set_rmf(rdata)
pha.set_analysis('wave')
wrapped = RSPModelPHA(adata, rdata, pha, mdl)
# Note that this is a Sherpa model, so it's normalization is
# per unit x axis, so when integrated here the bins are in
# Angstroms, so the bin width to multiply by is
# Angstroms, not keV.
#
dl = (DataPHA._hc / elo) - (DataPHA._hc / ehi)
expected = constant * specresp * dl
out = wrapped([4, 5])
assert_allclose(out, expected)
示例10: test_rspmodelpha_matrix_call_xspec
def test_rspmodelpha_matrix_call_xspec():
"""Check XSPEC constant is invariant to wavelength/energy setting.
As XSPEC models internally convert from Angstrom to keV,
do a simple check here.
"""
exposure = 200.1
rdata = create_non_delta_rmf()
specresp = create_non_delta_specresp()
adata = create_arf(rdata.energ_lo,
rdata.energ_hi,
specresp,
exposure=exposure)
constant = 2.3
mdl = XSconstant('flat')
mdl.factor = constant
nchans = rdata.e_min.size
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
# The set_arf call isn't necessary, but leave in
pha.set_arf(adata)
pha.set_rmf(rdata)
# The XSPEC models are evaluated on an energy grid, even when
# the analysis setting is wavelength. Also, unlike the Sherpa
# Constant model, the XSPEC XSconstant model is defined
# over the integrated bin, so no correction is needed for the
# bin width.
#
modvals = constant * specresp
matrix = get_non_delta_matrix()
expected = np.matmul(modvals, matrix)
wrapped = RSPModelPHA(adata, rdata, pha, mdl)
pha.set_analysis('wave')
out_wl = wrapped([4, 5])
assert_allclose(out_wl, expected)
pha.set_analysis('energy')
out_en = wrapped([4, 5])
assert_allclose(out_en, expected)
示例11: test_arf1d_pha_zero_energy_bin
def test_arf1d_pha_zero_energy_bin():
"What happens when the first bin starts at 0, with replacement"
ethresh = 1.0e-10
# Note: the two exposures are different to check which is
# used (the answer is neither, which seems surprising)
#
exposure1 = 0.1
egrid = np.asarray([0.0, 0.1, 0.2, 0.4, 0.5, 0.7, 0.8])
elo = egrid[:-1]
ehi = egrid[1:]
specresp = np.asarray([10.2, 9.8, 10.0, 12.0, 8.0, 10.0])
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always")
adata = create_arf(elo, ehi, specresp, exposure=exposure1,
ethresh=ethresh)
validate_zero_replacement(ws, 'ARF', 'user-arf', ethresh)
arf = ARF1D(adata)
exposure2 = 2.4
channels = np.arange(1, 7, dtype=np.int16)
counts = np.ones(6, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure2)
pha.set_arf(adata)
pha.set_analysis('energy')
mdl = MyPowLaw1D()
tmdl = PowLaw1D()
wrapped = ARFModelPHA(arf, pha, mdl)
out = wrapped([0.1, 0.2])
elo[0] = ethresh
expected = specresp * tmdl(elo, ehi)
assert_allclose(out, expected)
assert not np.isnan(out[0])
示例12: test_rspmodelpha_delta_call
def test_rspmodelpha_delta_call(ignore):
"""What happens calling a rsp with a pha (RMF is a delta fn)?
The ignore value gives the channel to ignore (counting from 0).
"""
exposure = 200.1
estep = 0.025
egrid = np.arange(0.1, 0.8, estep)
elo = egrid[:-1]
ehi = egrid[1:]
specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
specresp[2:5] = 0.0
specresp[16:19] = 3.2
adata = create_arf(elo, ehi, specresp, exposure=exposure)
rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
nchans = elo.size
constant = 2.3
mdl = Const1D('flat')
mdl.c0 = constant
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
pha.set_rmf(rdata)
# force energy units (only needed if ignore is set)
pha.set_analysis('energy')
if ignore is not None:
de = estep * 0.9
e0 = egrid[ignore]
pha.notice(lo=e0, hi=e0 + de, ignore=True)
# The assert are intended to help people reading this
# code rather than being a useful check that the code
# is working.
mask = [True] * nchans
mask[ignore] = False
assert (pha.mask == mask).all()
wrapped = RSPModelPHA(adata, rdata, pha, mdl)
# The model is evaluated on the RMF grid, not whatever
# is sent in. It is also integrated across the bins,
# which is why there is a multiplication by the
# grid width (for this constant model).
#
# Note that the filter doesn't change the grid.
#
de = egrid[1:] - egrid[:-1]
expected = constant * specresp * de
out = wrapped([4, 5])
assert_allclose(out, expected)
示例13: test_rspmodelpha_delta_call_channel
def test_rspmodelpha_delta_call_channel():
"""What happens calling a rsp with a pha (RMF is a delta fn)? Channels.
I am not convinced I understand the bin width calculation here,
as it doesn't seem to match the wavelength case.
"""
exposure = 200.1
estep = 0.025
egrid = np.arange(0.1, 0.8, estep)
elo = egrid[:-1]
ehi = egrid[1:]
specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
specresp[2:5] = 0.0
specresp[16:19] = 3.2
adata = create_arf(elo, ehi, specresp, exposure=exposure)
rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
nchans = elo.size
constant = 2.3
mdl = Const1D('flat')
mdl.c0 = constant
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
pha.set_rmf(rdata)
pha.set_analysis('channel')
wrapped = RSPModelPHA(adata, rdata, pha, mdl)
# Since this is channels you might expect the bin width to be 1,
# but it is actually still dE.
#
de = ehi - elo
expected = constant * specresp * de
out = wrapped([4, 5])
assert_allclose(out, expected)
示例14: test_rmfmodelpha_matrix_mismatch
def test_rmfmodelpha_matrix_mismatch(analysis):
"""Check that an error is raised if there's a mismatch.
"""
exposure = 200.1
rdata = create_non_delta_rmf()
# nchans should be rdata.e_min.size for the sizes to match
nchans = rdata.energ_lo.size
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
pha.set_rmf(rdata)
with pytest.raises(DataErr) as exc:
pha.set_analysis(analysis)
emsg = "RMF 'non-delta-rmf' is incompatible with PHA dataset 'test-pha'"
assert str(exc.value) == emsg
示例15: test_rspmodelpha_matrix_call
def test_rspmodelpha_matrix_call(ignore):
"""What happens calling a rsp with a pha (RMF is a matrix)?
The ignore value gives the channel to ignore (counting from 0).
"""
exposure = 200.1
rdata = create_non_delta_rmf()
specresp = create_non_delta_specresp()
elo = rdata.energ_lo
ehi = rdata.energ_hi
adata = create_arf(elo, ehi, specresp, exposure=exposure)
nchans = rdata.e_min.size
constant = 22.3
slope = -1.2
mdl = Polynom1D('sloped')
mdl.c0 = constant
mdl.c1 = slope
channels = np.arange(1, nchans + 1, dtype=np.int16)
counts = np.ones(nchans, dtype=np.int16)
pha = DataPHA('test-pha', channel=channels, counts=counts,
exposure=exposure)
pha.set_rmf(rdata)
# force energy units (only needed if ignore is set)
pha.set_analysis('energy')
if ignore is not None:
e0 = rdata.e_min[ignore]
e1 = rdata.e_max[ignore]
de = 0.9 * (e1 - e0)
pha.notice(lo=e0, hi=e0 + de, ignore=True)
# The assert are intended to help people reading this
# code rather than being a useful check that the code
# is working.
mask = [True] * nchans
mask[ignore] = False
assert (pha.mask == mask).all()
wrapped = RSPModelPHA(adata, rdata, pha, mdl)
# The filter does not change the grid
modvals = specresp * mdl(rdata.energ_lo, rdata.energ_hi)
matrix = get_non_delta_matrix()
expected = np.matmul(modvals, matrix)
out = wrapped([4, 5])
assert_allclose(out, expected)