當前位置: 首頁>>代碼示例>>Python>>正文


Python data.DataPHA類代碼示例

本文整理匯總了Python中sherpa.astro.data.DataPHA的典型用法代碼示例。如果您正苦於以下問題:Python DataPHA類的具體用法?Python DataPHA怎麽用?Python DataPHA使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了DataPHA類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_filter_energy_grid

class test_filter_energy_grid(SherpaTestCase):

    _notice = numpy.ones(46, dtype=bool)
    _notice[44:46]=False

    _ignore = numpy.zeros(46, dtype=bool)
    _ignore[14:33]=True

    _emin = numpy.array([
        1.46000006e-03,   2.48199999e-01,   3.06600004e-01,   4.67200011e-01,
        5.69400012e-01,   6.42400026e-01,   7.00800002e-01,   7.44599998e-01,
        7.88399994e-01,   8.17600012e-01,   8.61400008e-01,   8.90600026e-01,
        9.49000001e-01,   9.92799997e-01,   1.03659999e+00,   1.09500003e+00,
        1.13880002e+00,   1.19719994e+00,   1.28480005e+00,   1.40160000e+00,
        1.47459996e+00,   1.60599995e+00,   1.69360006e+00,   1.81040001e+00,
        1.89800000e+00,   1.94180000e+00,   2.02940011e+00,   2.08780003e+00,
        2.19000006e+00,   2.27760005e+00,   2.39439988e+00,   2.58419991e+00,
        2.71560001e+00,   2.86159992e+00,   3.08060002e+00,   3.38720012e+00,
        3.56240010e+00,   3.79600000e+00,   4.02960014e+00,   4.24860001e+00,
        4.71579981e+00,   5.02239990e+00,   5.37279987e+00,   5.89839983e+00,
        6.57000017e+00,   9.86960030e+00], numpy.float)

    _emax = numpy.array([
        0.2482    ,   0.3066    ,   0.46720001,   0.56940001,   0.64240003,
        0.7008    ,   0.7446    ,   0.78839999,   0.81760001,   0.86140001,
        0.89060003,   0.949     ,   0.9928    ,   1.03659999,   1.09500003,
        1.13880002,   1.19719994,   1.28480005,   1.4016    ,   1.47459996,
        1.60599995,   1.69360006,   1.81040001,   1.898     ,   1.9418    ,
        2.02940011,   2.08780003,   2.19000006,   2.27760005,   2.39439988,
        2.58419991,   2.71560001,   2.86159992,   3.08060002,   3.38720012,
        3.5624001 ,   3.796     ,   4.02960014,   4.24860001,   4.71579981,
        5.0223999 ,   5.37279987,   5.89839983,   6.57000017,   9.8696003 ,
        14.95040035], numpy.float)

    def setUp(self):
        self.old_level = logger.getEffectiveLevel()
        logger.setLevel(logging.ERROR)
        self.pha = DataPHA('', numpy.arange(46, dtype=float)+1.,
                           numpy.zeros(46),
                           bin_lo = self._emin, bin_hi = self._emax )
        self.pha.units="energy"

    def tearDown(self):
        logger.setLevel(self.old_level)

    def test_notice(self):
        #clear mask
        self.pha.notice()        
        self.pha.notice(0.0, 6.0)
        #self.assertEqual(self._notice, self.pha.mask)
        assert (self._notice==numpy.asarray(self.pha.mask)).all()


    def test_ignore(self):
        #clear mask
        self.pha.notice()
        self.pha.ignore(0.0, 1.0)
        self.pha.ignore(3.0, 15.0)
        #self.assertEqual(self._ignore, self.pha.mask)
        assert (self._ignore==numpy.asarray(self.pha.mask)).all()
開發者ID:ChandraCXC,項目名稱:sherpa,代碼行數:60,代碼來源:test_data.py

示例2: test_filter_wave_grid

class test_filter_wave_grid(SherpaTestCase):

    _notice = np.ones(16384, dtype=bool)
    _notice[8465:16384] = False

    _ignore = np.zeros(16384, dtype=bool)
    _ignore[14064:15984] = True

    _emin = np.arange(205.7875, 0.9875, -0.0125)

    _emax = _emin + 0.0125

    def setUp(self):
        self.old_level = logger.getEffectiveLevel()
        logger.setLevel(logging.ERROR)
        self.pha = DataPHA('', np.arange(16384, dtype=float) + 1,
                           np.zeros(16384),
                           bin_lo=self._emin,
                           bin_hi=self._emax)

    def tearDown(self):
        logger.setLevel(self.old_level)

    def test_notice(self):
        self.pha.units = 'wavelength'
        self.pha.notice()
        self.pha.notice(100.0, 225.0)
        assert (self._notice == np.asarray(self.pha.mask)).all()

    def test_ignore(self):
        self.pha.units = 'wavelength'
        self.pha.notice()
        self.pha.ignore(30.01, 225.0)
        self.pha.ignore(0.1, 6.0)
        assert (self._ignore == np.asarray(self.pha.mask)).all()
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:35,代碼來源:test_data.py

示例3: test_rsp_normf_error

def test_rsp_normf_error(analysis):
    """Check that an error is raised on set_analysis

    """

    exposure = 200.1

    # rdata is only used to define the grids
    rdata = create_non_delta_rmf()
    specresp = create_non_delta_specresp()
    adata = create_arf(rdata.energ_lo,
                       rdata.energ_hi,
                       specresp,
                       exposure=exposure)

    nchans = rdata.e_min.size
    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_arf(adata)

    with pytest.raises(DataErr) as exc:
        pha.set_analysis(analysis)

    emsg = "response incomplete for dataset test-pha, " + \
           "check the instrument model"
    assert str(exc.value) == emsg
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:28,代碼來源:test_instrument.py

示例4: calc_wstat_sherpa

def calc_wstat_sherpa(mu_sig, n_on, n_off, alpha):
    import sherpa.stats as ss
    from sherpa.astro.data import DataPHA
    from sherpa.models import Const1D
    wstat = ss.WStat()

    model = Const1D()
    model.c0 = mu_sig
    data = DataPHA(counts=np.atleast_1d(n_on),
                   name='dummy',
                   channel=np.atleast_1d(1),
                   backscal=1,
                   exposure=1)
    background = DataPHA(counts=np.atleast_1d(n_off),
                         name='dummy background',
                         channel=np.atleast_1d(1),
                         backscal=np.atleast_1d(1. / alpha),
                         exposure=1)

    data.set_background(background, 1)

    # Docstring for ``calc_stat``
    # https://github.com/sherpa/sherpa/blob/fe8508818662346cb6d9050ba676e23318e747dd/sherpa/stats/__init__.py#L219

    stat = wstat.calc_stat(model=model, data=data)
    print("Sherpa stat: {}".format(stat[0]))
    print("Sherpa fvec: {}".format(stat[1]))
開發者ID:adonath,項目名稱:gammapy,代碼行數:27,代碼來源:compare_wstat.py

示例5: test_rsp_no_arf_matrix_call

def test_rsp_no_arf_matrix_call(analysis, phaexp):
    """Check out Response1D with matrix but no ARF

    analysis is the analysis setting
    arfexp determines whether the arf has an exposure time
    phaexp determines whether the PHA has an exposure time
    """

    if phaexp:
        pha_exposure = 220.9
    else:
        pha_exposure = None

    if phaexp:
        exposure = pha_exposure
        mdl_label = '({} * flat)'.format(exposure)
    else:
        exposure = 1.0
        mdl_label = 'flat'

    rdata = create_non_delta_rmf()

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    # Turn off integration on this model, so that it is not integrated
    # across the bin width.
    #
    mdl.integrate = False

    nchans = rdata.e_min.size
    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=pha_exposure)

    pha.set_rmf(rdata)

    rsp = Response1D(pha)
    wrapped = rsp(mdl)

    assert isinstance(wrapped, ArithmeticModel)

    expname = 'apply_rmf({})'.format(mdl_label)
    assert wrapped.name == expname

    modvals = exposure * constant * np.ones(rdata.energ_lo.size)
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    pha.set_analysis(analysis)
    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:54,代碼來源:test_instrument.py

示例6: setUp

 def setUp(self):
     self.old_level = logger.getEffectiveLevel()
     logger.setLevel(logging.ERROR)
     self.pha = DataPHA('', np.arange(16384, dtype=float) + 1,
                        np.zeros(16384),
                        bin_lo=self._emin,
                        bin_hi=self._emax)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:7,代碼來源:test_data.py

示例7: setUp

 def setUp(self):
     self.old_level = logger.getEffectiveLevel()
     logger.setLevel(logging.ERROR)
     self.pha = DataPHA('', numpy.arange(46, dtype=float)+1.,
                        numpy.zeros(46),
                        bin_lo = self._emin, bin_hi = self._emax )
     self.pha.units="energy"
開發者ID:ChandraCXC,項目名稱:sherpa,代碼行數:7,代碼來源:test_data.py

示例8: test_arfmodelpha_call

def test_arfmodelpha_call(ignore):
    """What happens calling an arf with a pha?

    The ignore value indicates what channel to ignore (0 means
    nothing is ignored). The aim is to check edge effects,
    and as there are only a few channels, it was decided to
    test all channels.
    """

    # Note: the exposure is set in the PHA and ARF, but should not be
    #       used when evaluating the model; it's value has been
    #       set to a value that the test will fail it it is.
    #
    exposure = 200.1
    estep = 0.01
    egrid = np.arange(0.01, 0.06, estep)
    svals = [1.1, 1.2, 1.3, 1.4]
    specresp = np.asarray(svals)
    adata = create_arf(egrid[:-1], egrid[1:], specresp,
                       exposure=exposure)

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, 5, dtype=np.int16)
    counts = np.asarray([10, 5, 12, 7], dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_arf(adata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        de = estep * 0.9
        e0 = egrid[ignore]
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True, True, True, True]
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = ARFModelPHA(adata, pha, mdl)

    # The model is evaluated on the ARF grid, not whatever
    # is sent in. It is also integrated across the bins,
    # which is why there is a multiplication by the
    # grid width (for this constant model).
    #
    # Note that the filter doesn't change the grid.
    #
    de = egrid[1:] - egrid[:-1]
    expected = constant * np.asarray(svals) * de
    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:59,代碼來源:test_instrument.py

示例9: test_rspmodelpha_delta_call_wave

def test_rspmodelpha_delta_call_wave():
    """What happens calling a rsp with a pha (RMF is a delta fn)? Wavelength.

    Unlike the energy case no bins are ignored, as this code path
    has already been tested.
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
    specresp[2:5] = 0.0
    specresp[16:19] = 3.2
    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    pha.set_analysis('wave')

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # Note that this is a Sherpa model, so it's normalization is
    # per unit x axis, so when integrated here the bins are in
    # Angstroms, so the bin width to multiply by is
    # Angstroms, not keV.
    #
    dl = (DataPHA._hc / elo) - (DataPHA._hc / ehi)
    expected = constant * specresp * dl

    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:43,代碼來源:test_instrument.py

示例10: test_rspmodelpha_matrix_call_xspec

def test_rspmodelpha_matrix_call_xspec():
    """Check XSPEC constant is invariant to wavelength/energy setting.

    As XSPEC models internally convert from Angstrom to keV,
    do a simple check here.
    """

    exposure = 200.1
    rdata = create_non_delta_rmf()
    specresp = create_non_delta_specresp()
    adata = create_arf(rdata.energ_lo,
                       rdata.energ_hi,
                       specresp,
                       exposure=exposure)

    constant = 2.3
    mdl = XSconstant('flat')
    mdl.factor = constant

    nchans = rdata.e_min.size
    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)

    # The set_arf call isn't necessary, but leave in
    pha.set_arf(adata)
    pha.set_rmf(rdata)

    # The XSPEC models are evaluated on an energy grid, even when
    # the analysis setting is wavelength. Also, unlike the Sherpa
    # Constant model, the XSPEC XSconstant model is defined
    # over the integrated bin, so no correction is needed for the
    # bin width.
    #
    modvals = constant * specresp
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    pha.set_analysis('wave')
    out_wl = wrapped([4, 5])
    assert_allclose(out_wl, expected)

    pha.set_analysis('energy')
    out_en = wrapped([4, 5])
    assert_allclose(out_en, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:48,代碼來源:test_instrument.py

示例11: test_arf1d_pha_zero_energy_bin

def test_arf1d_pha_zero_energy_bin():
    "What happens when the first bin starts at 0, with replacement"

    ethresh = 1.0e-10

    # Note: the two exposures are different to check which is
    #       used (the answer is neither, which seems surprising)
    #
    exposure1 = 0.1
    egrid = np.asarray([0.0, 0.1, 0.2, 0.4, 0.5, 0.7, 0.8])
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = np.asarray([10.2, 9.8, 10.0, 12.0, 8.0, 10.0])

    with warnings.catch_warnings(record=True) as ws:
        warnings.simplefilter("always")
        adata = create_arf(elo, ehi, specresp, exposure=exposure1,
                           ethresh=ethresh)

    validate_zero_replacement(ws, 'ARF', 'user-arf', ethresh)

    arf = ARF1D(adata)

    exposure2 = 2.4
    channels = np.arange(1, 7, dtype=np.int16)
    counts = np.ones(6, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure2)
    pha.set_arf(adata)

    pha.set_analysis('energy')

    mdl = MyPowLaw1D()
    tmdl = PowLaw1D()

    wrapped = ARFModelPHA(arf, pha, mdl)

    out = wrapped([0.1, 0.2])
    elo[0] = ethresh
    expected = specresp * tmdl(elo, ehi)

    assert_allclose(out, expected)
    assert not np.isnan(out[0])
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:43,代碼來源:test_instrument.py

示例12: test_rspmodelpha_delta_call

def test_rspmodelpha_delta_call(ignore):
    """What happens calling a rsp with a pha (RMF is a delta fn)?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
    specresp[2:5] = 0.0
    specresp[16:19] = 3.2
    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        de = estep * 0.9
        e0 = egrid[ignore]
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # The model is evaluated on the RMF grid, not whatever
    # is sent in. It is also integrated across the bins,
    # which is why there is a multiplication by the
    # grid width (for this constant model).
    #
    # Note that the filter doesn't change the grid.
    #
    de = egrid[1:] - egrid[:-1]
    expected = constant * specresp * de
    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:56,代碼來源:test_instrument.py

示例13: test_rspmodelpha_delta_call_channel

def test_rspmodelpha_delta_call_channel():
    """What happens calling a rsp with a pha (RMF is a delta fn)? Channels.

    I am not convinced I understand the bin width calculation here,
    as it doesn't seem to match the wavelength case.
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
    specresp[2:5] = 0.0
    specresp[16:19] = 3.2
    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    pha.set_analysis('channel')

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # Since this is channels you might expect the bin width to be 1,
    # but it is actually still dE.
    #
    de = ehi - elo
    expected = constant * specresp * de

    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:41,代碼來源:test_instrument.py

示例14: test_rmfmodelpha_matrix_mismatch

def test_rmfmodelpha_matrix_mismatch(analysis):
    """Check that an error is raised if there's a mismatch.

    """

    exposure = 200.1
    rdata = create_non_delta_rmf()

    # nchans should be rdata.e_min.size for the sizes to match
    nchans = rdata.energ_lo.size
    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    with pytest.raises(DataErr) as exc:
        pha.set_analysis(analysis)

    emsg = "RMF 'non-delta-rmf' is incompatible with PHA dataset 'test-pha'"
    assert str(exc.value) == emsg
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:21,代碼來源:test_instrument.py

示例15: test_rspmodelpha_matrix_call

def test_rspmodelpha_matrix_call(ignore):
    """What happens calling a rsp with a pha (RMF is a matrix)?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    rdata = create_non_delta_rmf()
    specresp = create_non_delta_specresp()
    elo = rdata.energ_lo
    ehi = rdata.energ_hi

    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    nchans = rdata.e_min.size

    constant = 22.3
    slope = -1.2
    mdl = Polynom1D('sloped')
    mdl.c0 = constant
    mdl.c1 = slope

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha', channel=channels, counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        e0 = rdata.e_min[ignore]
        e1 = rdata.e_max[ignore]
        de = 0.9 * (e1 - e0)
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # The filter does not change the grid
    modvals = specresp * mdl(rdata.energ_lo, rdata.energ_hi)
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    out = wrapped([4, 5])
    assert_allclose(out, expected)
開發者ID:DougBurke,項目名稱:sherpa,代碼行數:52,代碼來源:test_instrument.py


注:本文中的sherpa.astro.data.DataPHA類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。