當前位置: 首頁>>代碼示例>>Python>>正文


Python Image.is_bigendian方法代碼示例

本文整理匯總了Python中sensor_msgs.msg.Image.is_bigendian方法的典型用法代碼示例。如果您正苦於以下問題:Python Image.is_bigendian方法的具體用法?Python Image.is_bigendian怎麽用?Python Image.is_bigendian使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sensor_msgs.msg.Image的用法示例。


在下文中一共展示了Image.is_bigendian方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: appendMessages

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
 def appendMessages(self, stamp, messages):
     if not self._image is None:
         # Build the image message and push it on the message list
         msg = Image()
         msg.header.stamp = stamp
         msg.header.frame_id = self._frameId
         msg.width = self._image.shape[0]
         msg.height = self._image.shape[1]
         if (len(self._image.shape) == 2) or (len(self._image.shape) == 3 and self._image.shape[2] == 1):
             # A gray image
             msg.encoding = '8UC1'
             stepMult = 1
         elif len(self._image.shape) == 3 and self._image.shape[2] == 3:
             # A color image
             msg.encoding = 'rgb8'
             stepMult = 3
         elif len(self._image.shape) == 3 and self._image.shape[2] == 4:
             # A color image
             msg.encoding = 'rgba8'
             stepMult = 3
         else:
             raise RuntimeError("The parsing of images is very simple. " +\
                                "Only 3-channel rgb (rgb8), 4 channel rgba " +\
                                "(rgba8) and 1 channel mono (mono8) are " +\
                                "supported. Got an image with shape " +\
                                "{0}".format(self._image.shape))
         msg.is_bigendian = False
         msg.step = stepMult * msg.width
         msg.data = self._image.flatten().tolist()
         messages.append((self._topic, msg))
開發者ID:Aharobot,項目名稱:rviz_pyplot,代碼行數:32,代碼來源:Image.py

示例2: airpub

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
def airpub():
    pub = rospy.Publisher("airsim/image_raw", Image, queue_size=1)
    rospy.init_node('image_raw', anonymous=True)
    rate = rospy.Rate(10) # 10hz

    # connect to the AirSim simulator 
    client = airsim.MultirotorClient()
    client.confirmConnection()

    while not rospy.is_shutdown():
         # get camera images from the car
        responses = client.simGetImages([
            airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)])  #scene vision image in uncompressed RGBA array

        for response in responses:
            img_rgba_string = response.image_data_uint8

        # Populate image message
        msg=Image() 
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = "frameId"
        msg.encoding = "rgba8"
        msg.height = 360  # resolution should match values in settings.json 
        msg.width = 640
        msg.data = img_rgba_string
        msg.is_bigendian = 0
        msg.step = msg.width * 4

        # log time and size of published image
        rospy.loginfo(len(response.image_data_uint8))
        # publish image message
        pub.publish(msg)
        # sleep until next cycle
        rate.sleep()
開發者ID:BrainsGarden,項目名稱:AirSim,代碼行數:36,代碼來源:drone_image_raw.py

示例3: convert

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
def convert(data):
	width=data.info.width
	height=data.info.height
	pixelList = [0] *width*height
	
	imageMsg=Image()
	imageMsg.header.stamp = rospy.Time.now()
	imageMsg.header.frame_id = '1'
	imageMsg.height = height
	imageMsg.width = width
	imageMsg.encoding = 'mono8'
	imageMsg.is_bigendian = 0
	imageMsg.step = width
	
	for h in range(height):
		for w in range(width):
			if data.data[h*width+w]==-1:
				pixelList[h*width+w] = 150
			elif data.data[h*width+w]==0:
				pixelList[h*width+w] = 0
			elif data.data[h*width+w]==100:
				pixelList[h*width+w] = 255	
			else:
				pixelList[h*width+w]=data.data[h*width+w]
				print 'ERROR'
				
	imageMsg.data = pixelList
	imagePub.publish(imageMsg)
開發者ID:bripappas,項目名稱:Gen2_Platforms,代碼行數:30,代碼來源:occupancyToImage.py

示例4: publish

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
 def publish( self ):
     # Get the image.
     image = self.__videoDeviceProxy.getImageRemote( self.__videoDeviceProxyName );
         
     # Create Image message.
     ImageMessage = Image();
     ImageMessage.header.stamp.secs = image[ 5 ];
     ImageMessage.width = image[ 0 ];
     ImageMessage.height = image[ 1 ];
     ImageMessage.step = image[ 2 ] * image[ 0 ];
     ImageMessage.is_bigendian = False;
     ImageMessage.encoding = 'bgr8';
     ImageMessage.data = image[ 6 ];
     
     self.__imagePublisher.publish( ImageMessage );
     
     # Create CameraInfo message.
     # Data from the calibration phase is hard coded for now.
     CameraInfoMessage = CameraInfo();
     CameraInfoMessage.header.stamp.secs = image[ 5 ];
     CameraInfoMessage.width = image[ 0 ];
     CameraInfoMessage.height = image[ 1 ];
     CameraInfoMessage.D = [ -0.0769218451517258, 0.16183180613612602, 0.0011626049774280595, 0.0018733894100460534, 0.0 ];
     CameraInfoMessage.K = [ 581.090096189648, 0.0, 341.0926325830606, 0.0, 583.0323248080421, 241.02441593704128, 0.0, 0.0, 1.0 ];
     CameraInfoMessage.R = [ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ];
     CameraInfoMessage.P = [ 580.5918359588198, 0.0, 340.76398441334106, 0.0, 0.0, 582.4042541534321, 241.04182225157172, 0.0, 0.0, 0.0, 1.0, 0.0] ;
     CameraInfoMessage.distortion_model = 'plumb_bob';
     
     #CameraInfoMessage.roi.x_offset = self.__ROIXOffset;
     #CameraInfoMessage.roi.y_offset = self.__ROIYOffset;
     #CameraInfoMessage.roi.width = self.__ROIWidth;
     #CameraInfoMessage.roi.height = self.__ROIHeight;
     #CameraInfoMessage.roi.do_rectify = self.__ROIDoRectify;
     
     self.__cameraInfoPublisher.publish( CameraInfoMessage );
開發者ID:bootsman123,項目名稱:nao_utils,代碼行數:37,代碼來源:NaoCameraModule.py

示例5: copy_Image_empty_data

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
def copy_Image_empty_data(image_old):
    image_new = Image()
    image_new.header = copy(image_old.header)
    image_new.height = copy(image_old.height)
    image_new.width = copy(image_old.width)
    image_new.encoding = copy(image_old.encoding)
    image_new.is_bigendian = copy(image_old.is_bigendian)
    image_new.step = copy(image_old.step)
    return image_new
開發者ID:MatthewRueben,項目名稱:rgbd-range-privacy-filter,代碼行數:11,代碼來源:range_filter.py

示例6: publishCombined

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
	def publishCombined(self):
		#Enter Main Loop
		while not rospy.is_shutdown():
			
			#Convert to Numpy  Arrays
			map = []
			for i in range(0, self.numRobots):
				map.append(numpy.array(self.searchedData[i].data))
				
			combined2 = map[0]
			if self.numRobots > 1:
				#Find Minimum of all maps
				for i in range(1, self.numRobots):
					combined2 = numpy.minimum(combined2,map[i])
					
			#Pack Occupancy Grid Message
			mapMsg=OccupancyGrid()
			mapMsg.header.stamp=rospy.Time.now()
			mapMsg.header.frame_id=self.mapData.header.frame_id
			mapMsg.info.resolution=self.mapData.info.resolution
			mapMsg.info.width=self.mapData.info.width
			mapMsg.info.height=self.mapData.info.height
			mapMsg.info.origin=self.mapData.info.origin
			mapMsg.data=combined2.tolist()
			
			#Convert combined Occupancy grid values to grayscal image values
			combined2[combined2 == -1] = 150			#Unknown -1->150 		(gray)
			combined2[combined2 == 100] = 255			#Not_Searched 100->255	(white)
														#Searched=0				(black)
														
			#Calculate percentage of open area searched
			numNotSearched = combined2[combined2==255].size
			numSearched = combined2[combined2==0].size
			percentSearched = 100*float(numSearched)/(numNotSearched+numSearched)
			percentSearchedMsg = Float32()
			percentSearchedMsg.data = percentSearched
			self.percentPub.publish(percentSearchedMsg)
			
			#Pack Image Message
			imageMsg=Image()
			imageMsg.header.stamp = rospy.Time.now()
			imageMsg.header.frame_id = self.mapData.header.frame_id
			imageMsg.height = self.mapData.info.height
			imageMsg.width = self.mapData.info.width
			imageMsg.encoding = 'mono8'
			imageMsg.is_bigendian = 0
			imageMsg.step = self.mapData.info.width
			imageMsg.data = combined2.tolist()
			
			#Publish Combined Occupancy Grid and Image
			self.searchedCombinePub.publish(mapMsg)
			self.imagePub.publish(imageMsg)
			
			#Update Every 0.5 seconds
			rospy.sleep(1.0)
開發者ID:bripappas,項目名稱:Gen2_Platforms,代碼行數:57,代碼來源:combineSearchSpace.py

示例7: callback

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
    def callback(self, data):
        #print "got some shit coming in"
        #if data is not None:
            #plane= data.pose.position
            #nrm= norm([plane.x, plane.y, plane.z])

            #normal= np.array([plane.x, plane.y, plane.z])/nrm

            #print "got here"

            ##replace with numpy array
            #plane= np.array([plane.x, plane.y, plane.z])

            ##get the rotation matrix
            #rmatrix= rotationMatrix(normal)

            ##print rmatrix

            ##for point in data.points:
                ##print point
                ##p= np.array([point.x, point.y, point.z])
                ##flattened_point= project(p, plane, normal)
                ##print flattened_point
                ##print np.dot(rmatrix,flattened_point)

        try:
            resp= self.seperation()
            print resp.result
            #self.pub.publish(resp.clusters[0])
            im= Image()
            im.header.seq= 72
            im.header.stamp.secs= 1365037570
            im.header.stamp.nsecs= 34077284
            im.header.frame_id= '/camera_rgb_optical_frame'
            im.height= 480
            im.width= 640
            im.encoding= '16UC1'
            im.is_bigendian= 0
            im.step= 1280
            im.data= [100 for n in xrange(1280*480)]

            for point in resp.clusters[0].points:
                x= point.x * 640
                y= point.y * 480
                im.data[y*1280 + x] = 10

            pub_image.publish(im)

        except Exception, e:
            print "service call failed"
            print e
開發者ID:briantoth,項目名稱:BeerPongButler,代碼行數:53,代碼來源:rotate_to_xy_plane.py

示例8: publish_image

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
 def publish_image(self):
     # get the image from the Nao
     img = self.nao_cam.getImageRemote(self.proxy_name)
     # copy the data into the ROS Image
     ros_img = Image()
     ros_img.width = img[0]
     ros_img.height = img[1]
     ros_img.step = img[2] * img[0]
     ros_img.header.stamp.secs = img[5]
     ros_img.data = img[6]
     ros_img.is_bigendian = False
     ros_img.encoding = "rgb8"
     ros_img.data = img[6]
     # publish the image
     self.nao_cam_pub.publish(ros_img)
開發者ID:chril,項目名稱:wpi-rail-ros-pkg,代碼行數:17,代碼來源:nao_vision.py

示例9: OccupancyGridToNavImage

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
 def OccupancyGridToNavImage(self, grid_map):
     img = Image()
     img.header = grid_map.header
     img.height = grid_map.info.height
     img.width = grid_map.info.width
     img.is_bigendian = 1
     img.step = grid_map.info.width
     img.encoding = "mono8"
     maxindex = img.height*img.width
     numpy.uint
     for i in range(0, maxindex, 1):
         if int(grid_map.data[i]) < 20:
             #img.data[i] = "0"
             data.append(0)
         else:
             img.data[i] = "255"
     return imgding
開發者ID:ipa-fmw-ce,項目名稱:cob_automated_planning,代碼行數:19,代碼來源:map_analyzer.py

示例10: array_to_image

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
def array_to_image(array):
    """Takes a NxMx3 array and converts it into a ROS image message.

    """
    # Sanity check the input array shape
    if len(array.shape) != 3 or array.shape[2] != 3:
        raise ValueError('Array must have shape MxNx3')

    # Ravel the array into a single buffer
    image_data = (array.astype(np.uint8)).tostring(order='C')

    # Create the image message
    image_msg = Image()
    image_msg.height = array.shape[0]
    image_msg.width = array.shape[1]
    image_msg.encoding = 'rgb8'
    image_msg.is_bigendian = 0
    image_msg.step = array.shape[1] * 3
    image_msg.data = image_data

    return image_msg
開發者ID:Somahtr,項目名稱:robotic_surgery,代碼行數:23,代碼來源:point_detection.py

示例11: main

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
def main():
    pub = rospy.Publisher('image_maker', Image)
    rospy.init_node('image_maker')
    #rospy.wait_for_service('tabletop_segmentation')
    im= Image()
    im.header.seq= 72
    im.header.stamp.secs= 1365037570
    im.header.stamp.nsecs= 34077284
    im.header.frame_id= '/camera_rgb_optical_frame'
    im.height= 480
    im.width= 640
    im.encoding= '16UC1'
    im.is_bigendian= 0
    im.step= 1280
    im.data= [100 for n in xrange(1280*480)]

    while not rospy.is_shutdown():
        try:
            pub.publish(im)
            sleep(.5)

        except Exception, e:
            print e
開發者ID:briantoth,項目名稱:BeerPongButler,代碼行數:25,代碼來源:image_generator.py

示例12: numpy_to_image

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
def numpy_to_image(arr, encoding):
	if not encoding in name_to_dtypes:
		raise TypeError('Unrecognized encoding {}'.format(encoding))

	im = Image(encoding=encoding)

	# extract width, height, and channels
	dtype_class, exp_channels = name_to_dtypes[encoding]
	dtype = np.dtype(dtype_class)
	if len(arr.shape) == 2:
		im.height, im.width, channels = arr.shape + (1,)
	elif len(arr.shape) == 3:
		im.height, im.width, channels = arr.shape
	else:
		raise TypeError("Array must be two or three dimensional")

	# check type and channels
	if exp_channels != channels:
		raise TypeError("Array has {} channels, {} requires {}".format(
			channels, encoding, exp_channels
		))
	if dtype_class != arr.dtype.type:
		raise TypeError("Array is {}, {} requires {}".format(
			arr.dtype.type, encoding, dtype_class
		))

	# make the array contiguous in memory, as mostly required by the format
	contig = np.ascontiguousarray(arr)
	im.data = contig.tostring()
	im.step = contig.strides[0]
	im.is_bigendian = (
		arr.dtype.byteorder == '>' or 
		arr.dtype.byteorder == '=' and sys.byteorder == 'big'
	)

	return im
開發者ID:eric-wieser,項目名稱:ros_numpy,代碼行數:38,代碼來源:image.py

示例13:

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
UDK_camera=(240,320)
#box(left, upper, right, lower)
box_A = (0, 0, UDK_camera[1],UDK_camera[0]) 
box_B = (UDK_camera[1],0,UDK_camera[1]*2,UDK_camera[0])
box_C = (UDK_camera[1]*2,0,UDK_camera[1]*3,UDK_camera[0])
box_D = (UDK_camera[1]*3,0,UDK_camera[1]*4,UDK_camera[0])

clientsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
clientsock.connect((host,port))
c_msg = 'OK\r\n'
clientsock.sendall(c_msg)

#set image info 
img_A=Image()
img_A.encoding='rgb8'
img_A.is_bigendian =0
img_A.step =1
img_A.height = UDK_camera[0]
img_A.width = UDK_camera[1]

img_B=Image()
img_B.encoding='rgb8'
img_B.is_bigendian =0
img_B.step =1
img_B.height = UDK_camera[0]
img_B.width = UDK_camera[1]

img_C=Image()
img_C.encoding='rgb8'
img_C.is_bigendian =0
img_C.step =1
開發者ID:m-shimizu,項目名稱:USARSimSampleClient,代碼行數:33,代碼來源:usarimage2ros.py

示例14: spin

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
    def spin(self):
        
        while not rospy.is_shutdown():

            m = MarkerArray()

            stamp, f1_tact, f2_tact, f3_tact, palm_tact = self.bh.getTactileData()
            finger_skin_data = []
            finger_skin_data.append(f1_tact)
            finger_skin_data.append(f2_tact)
            finger_skin_data.append(f3_tact)
            finger_skin_data.append(palm_tact)

            frame_id = []
            frame_id.append(self.prefix+"_HandFingerOneKnuckleThreeLink")
            frame_id.append(self.prefix+"_HandFingerTwoKnuckleThreeLink")
            frame_id.append(self.prefix+"_HandFingerThreeKnuckleThreeLink")
            frame_id.append(self.prefix+"_HandPalmLink")

            arrows = False

            if arrows:
                for sens in range(0, 4):
                    for i in range(0, 24):
                        halfside1 = PyKDL.Vector(pressure_info.sensor[sens].halfside1[i].x, pressure_info.sensor[sens].halfside1[i].y, pressure_info.sensor[sens].halfside1[i].z)
                        halfside2 = PyKDL.Vector(pressure_info.sensor[sens].halfside2[i].x, pressure_info.sensor[sens].halfside2[i].y, pressure_info.sensor[sens].halfside2[i].z)
                        # calculate cross product: halfside1 x halfside2
                        norm = halfside1*halfside2
                        norm.Normalize()
                        scale = 0
                        if sens == 0:
                            scale = data.finger1_tip[i]/256.0
                        elif sens == 1:
                            scale = data.finger2_tip[i]/256.0
                        elif sens == 2:
                            scale = data.finger3_tip[i]/256.0
                        else:
                            scale = data.palm_tip[i]/256.0
                        norm = norm*scale*0.01
                        marker = Marker()
                        marker.header.frame_id = frame_id[sens]
                        marker.header.stamp = rospy.Time.now()
                        marker.ns = frame_id[sens]
                        marker.id = i
                        marker.type = 0
                        marker.action = 0
                        marker.points.append(Point(pressure_info.sensor[sens].center[i].x,pressure_info.sensor[sens].center[i].y,pressure_info.sensor[sens].center[i].z))
                        marker.points.append(Point(pressure_info.sensor[sens].center[i].x+norm.x(), pressure_info.sensor[sens].center[i].y+norm.y(), pressure_info.sensor[sens].center[i].z+norm.z()))
                        marker.pose = Pose( Point(0,0,0), Quaternion(0,0,0,1) )
                        marker.scale = Vector3(0.001, 0.002, 0)
                        marker.color = ColorRGBA(1,0,0,1)
                        m.markers.append(marker)
                self.pub.publish(m)
            else:
                for sens in range(0, 4):
                    for i in range(0, 24):
                        value = self.convertToRGB(int(finger_skin_data[sens][i]/2))

                        marker = Marker()
                        marker.header.frame_id = frame_id[sens]
                        marker.header.stamp = rospy.Time.now()
                        marker.ns = frame_id[sens]
                        marker.id = i
                        marker.type = 1
                        marker.action = 0
                        if sens < 3:
                            marker.pose = pm.toMsg(self.bh.pressure_frames[i])
                            marker.scale = Vector3(self.bh.pressure_cells_size[i][0], self.bh.pressure_cells_size[i][1], 0.004)
                        else:
                            marker.pose = pm.toMsg(self.bh.palm_pressure_frames[i])
                            marker.scale = Vector3(self.bh.palm_pressure_cells_size[i][0], self.bh.palm_pressure_cells_size[i][1], 0.004)
                        marker.color = ColorRGBA(1.0/255.0*value[0], 1.0/255.0*value[1], 1.0/255.0*value[2],1)
                        m.markers.append(marker)
                self.pub.publish(m)


        #  palm   f1  f2  f3
        #         xxx xxx xxx
        #         xxx xxx xxx 
        #  xxxxx  xxx xxx xxx
        # xxxxxxx xxx xxx xxx
        # 56789xx 9xx 9xx 9xx
        #  01234  678 678 678
        #         345 345 345
        #         012 012 012

            im = Image()
            im.height = 8
            im.width = 19
            im.encoding = "rgb8"
            im.is_bigendian = 0
            im.step = im.width*3
            im.data = [0]*(im.step*im.height)
            for finger in range(0, 3):
                for y in range(0, 8):
                    for x in range(0, 3):
                        xim = 8 + x + finger * 4
                        yim = im.height-1-y
                        value = self.convertToRGB(int(finger_skin_data[finger][y*3+x]/2))
                        im.data[(yim*im.width + xim)*3+0] = value[0]
#.........這裏部分代碼省略.........
開發者ID:RCPRG-ros-pkg,項目名稱:barrett_hand_common,代碼行數:103,代碼來源:tact_markers.py

示例15: find_object

# 需要導入模塊: from sensor_msgs.msg import Image [as 別名]
# 或者: from sensor_msgs.msg.Image import is_bigendian [as 別名]
    def find_object(self):
        with self.lock_depth:
            image_data = self.image_data
            depth_data = self.depth_data

        pub_data = rospy.Publisher('/racecar/image/data', Float64MultiArray, queue_size=1)
        arrayData = Float64MultiArray()
        #print "received image"
        if image_data:
            newImage = Image()
            newImage.encoding = image_data.encoding
            newImage.header = image_data.header
            newImage.is_bigendian = image_data.is_bigendian

            newData = bytearray()
            image = image_data.data
            clusters = []
            white = chr(255) *3
            black = chr(0) * 3
            red = chr(0) + chr(0) + chr(255)
            blue = chr(255) + chr(0) * 2

            #defining color search thresholds
            redThreshold = 230
            blueThreshold = 20
            greenLowerThreshold = 50
            greenUpperThreshold = 200
            
            height = 0
            starttime = time.time()

            for h in xrange(0, image_data.height, self.resolution):
                height += 1
                for w in xrange(0, image_data.width, self.resolution):
                    index = w * 3 + image_data.width * 3 * h
                    b = ord(image[index])
                    g = ord(image[index + 1])
                    r = ord(image[index + 2])
                    #filtering for the color
                    if r > redThreshold and b < blueThreshold and g <= greenUpperThreshold and g >= greenLowerThreshold:
                        for char in white:
                            newData.append(char)
                        inCluster = False
                        for cluster in clusters:
                            if self.checkAdjacency((w, h), cluster):
                                cluster.add((w, h))
                                inCluster = True
                        if not inCluster:
                            newCluster = set()
                            newCluster.add((w, h))
                            clusters.append(newCluster)
                    else:
                        for char in black:
                            newData.append(char)

                
            newImage.height = height
            newImage.width = len(newData)/height/3
            newImage.step = len(newData)/height
            newImage.data = str(newData)


            #print 'time taken: ', time.time() - starttime
            
            clusters = self.reduceClusters(clusters)
            #print len(clusters), float(len(candidates_x))/len(newData)
            #print [len(cluster) for cluster in clusters]
            if len(clusters) > 1:
                print "multiple objects found"
                print [len(cluster) for cluster in clusters]

            if len(clusters):
                publishableClusters = [max(clusters, key=lambda x:len(x))]
                data_to_publish = []
                for cluster in publishableClusters:
                    centerX = sum(x for (x, y) in cluster)/len(cluster)
                    centerY = sum(y for (x, y) in cluster)/len(cluster)
                    width = max(cluster, key=lambda (x, y):x)[0] - min(cluster, key=lambda (x, y):x)[0]
                    height = max(cluster, key=lambda (x, y):y)[1] - min(cluster, key=lambda (x, y):y)[1]
                    relativeLocation = float(centerX)/image_data.width - 0.5
                    relativeAngle = relativeLocation * 100 * math.pi / 180
                    data_to_publish += [centerX, centerY, width, height, relativeAngle]
                    #print 'center ', centerX, centerY, len(candidates_x)
                    #print 'distance ', depth1, depth2
                    #print 'dim ', height, width
                    '''depth_index = centerX * 2 + image_data.width * 2 * centerY
                    depth1 = ord(depth_data.data[depth_index])
                    depth2 = ord(depth_data.data[depth_index + 1])'''

                arrayData.data = data_to_publish
            else:

                arrayData.data = [-1, -1, -1, -1, -1]
                print 'no cone found'
            pub_data.publish(arrayData)
            #print "publishing"
            pub_img = rospy.Publisher('/racecar/image/newImage', Image, queue_size=1)
            pub_img.publish(newImage)
        else:
            arrayData.data = [-1, -1, -1, -1]
#.........這裏部分代碼省略.........
開發者ID:plancherb1,項目名稱:6.141-All-Code,代碼行數:103,代碼來源:image_parser.py


注:本文中的sensor_msgs.msg.Image.is_bigendian方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。