當前位置: 首頁>>代碼示例>>Python>>正文


Python TensorFlow.delete_endpoint方法代碼示例

本文整理匯總了Python中sagemaker.tensorflow.TensorFlow.delete_endpoint方法的典型用法代碼示例。如果您正苦於以下問題:Python TensorFlow.delete_endpoint方法的具體用法?Python TensorFlow.delete_endpoint怎麽用?Python TensorFlow.delete_endpoint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sagemaker.tensorflow.TensorFlow的用法示例。


在下文中一共展示了TensorFlow.delete_endpoint方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_tf_local_mode

# 需要導入模塊: from sagemaker.tensorflow import TensorFlow [as 別名]
# 或者: from sagemaker.tensorflow.TensorFlow import delete_endpoint [as 別名]
def test_tf_local_mode(tf_full_version, sagemaker_local_session):
    local_mode_lock_fd = open(LOCK_PATH, 'w')
    local_mode_lock = local_mode_lock_fd.fileno()
    with timeout(minutes=5):
        script_path = os.path.join(DATA_DIR, 'iris', 'iris-dnn-classifier.py')

        estimator = TensorFlow(entry_point=script_path,
                               role='SageMakerRole',
                               framework_version=tf_full_version,
                               training_steps=1,
                               evaluation_steps=1,
                               hyperparameters={'input_tensor_name': 'inputs'},
                               train_instance_count=1,
                               train_instance_type='local',
                               base_job_name='test-tf',
                               sagemaker_session=sagemaker_local_session)

        inputs = estimator.sagemaker_session.upload_data(path=DATA_PATH,
                                                         key_prefix='integ-test-data/tf_iris')
        estimator.fit(inputs)
        print('job succeeded: {}'.format(estimator.latest_training_job.name))

    endpoint_name = estimator.latest_training_job.name
    try:
        # Since Local Mode uses the same port for serving, we need a lock in order
        # to allow concurrent test execution. The serving test is really fast so it still
        # makes sense to allow this behavior.
        fcntl.lockf(local_mode_lock, fcntl.LOCK_EX)
        json_predictor = estimator.deploy(initial_instance_count=1,
                                          instance_type='local',
                                          endpoint_name=endpoint_name)

        features = [6.4, 3.2, 4.5, 1.5]
        dict_result = json_predictor.predict({'inputs': features})
        print('predict result: {}'.format(dict_result))
        list_result = json_predictor.predict(features)
        print('predict result: {}'.format(list_result))

        assert dict_result == list_result
    finally:
        estimator.delete_endpoint()
        time.sleep(5)
        fcntl.lockf(local_mode_lock, fcntl.LOCK_UN)
開發者ID:cheesama,項目名稱:sagemaker-python-sdk,代碼行數:45,代碼來源:test_local_mode.py


注:本文中的sagemaker.tensorflow.TensorFlow.delete_endpoint方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。