當前位置: 首頁>>代碼示例>>Python>>正文


Python LaurentPolynomialRing.parent方法代碼示例

本文整理匯總了Python中sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing.parent方法的典型用法代碼示例。如果您正苦於以下問題:Python LaurentPolynomialRing.parent方法的具體用法?Python LaurentPolynomialRing.parent怎麽用?Python LaurentPolynomialRing.parent使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing的用法示例。


在下文中一共展示了LaurentPolynomialRing.parent方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing [as 別名]
# 或者: from sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing import parent [as 別名]
    def __init__(self, L, q=None):
        """
        Initialize ``self``.

        TESTS::

            sage: L = posets.BooleanLattice(4)
            sage: M = L.quantum_moebius_algebra()
            sage: TestSuite(M).run() # long time

            sage: from sage.combinat.posets.moebius_algebra import QuantumMoebiusAlgebra
            sage: L = posets.Crown(2)
            sage: QuantumMoebiusAlgebra(L)
            Traceback (most recent call last):
            ...
            ValueError: L must be a lattice
        """
        if not L.is_lattice():
            raise ValueError("L must be a lattice")
        if q is None:
            q = LaurentPolynomialRing(ZZ, 'q').gen()
        self._q = q
        R = q.parent()
        cat = Algebras(R).WithBasis()
        if L in FiniteEnumeratedSets():
            cat = cat.Commutative().FiniteDimensional()
        self._lattice = L
        self._category = cat
        Parent.__init__(self, base=R, category=self._category.WithRealizations())
開發者ID:sagemath,項目名稱:sage,代碼行數:31,代碼來源:moebius_algebra.py

示例2: __classcall__

# 需要導入模塊: from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing [as 別名]
# 或者: from sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing import parent [as 別名]
    def __classcall__(cls, q=None, bar=None, R=None, **kwds):
        """
        Normalize input to ensure a unique representation.

        EXAMPLES::

            sage: R.<q> = LaurentPolynomialRing(ZZ)
            sage: O1 = algebras.QuantumMatrixCoordinate(4)
            sage: O2 = algebras.QuantumMatrixCoordinate(4, 4, q=q)
            sage: O3 = algebras.QuantumMatrixCoordinate(4, R=ZZ)
            sage: O4 = algebras.QuantumMatrixCoordinate(4, R=R, q=q)
            sage: O1 is O2 and O2 is O3 and O3 is O4
            True
            sage: O5 = algebras.QuantumMatrixCoordinate(4, R=QQ)
            sage: O1 is O5
            False
        """
        if R is None:
            R = ZZ
        else:
            if q is not None:
                q = R(q)
        if q is None:
            q = LaurentPolynomialRing(R, 'q').gen()
        return super(QuantumMatrixCoordinateAlgebra_abstract,
                     cls).__classcall__(cls,
                                        q=q, bar=bar, R=q.parent(), **kwds)
開發者ID:sagemath,項目名稱:sage,代碼行數:29,代碼來源:quantum_matrix_coordinate_algebra.py

示例3: __classcall_private__

# 需要導入模塊: from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing [as 別名]
# 或者: from sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing import parent [as 別名]
    def __classcall_private__(cls, d, n, q=None, R=None):
        """
        Standardize input to ensure a unique representation.

        TESTS::

            sage: Y1 = algebras.YokonumaHecke(5, 3)
            sage: q = LaurentPolynomialRing(QQ, 'q').gen()
            sage: Y2 = algebras.YokonumaHecke(5, 3, q)
            sage: Y3 = algebras.YokonumaHecke(5, 3, q, q.parent())
            sage: Y1 is Y2 and Y2 is Y3
            True
        """
        if q is None:
            q = LaurentPolynomialRing(QQ, 'q').gen()
        if R is None:
            R = q.parent()
        q = R(q)
        if R not in Rings().Commutative():
            raise TypeError("base ring must be a commutative ring")
        return super(YokonumaHeckeAlgebra, cls).__classcall__(cls, d, n, q, R)
開發者ID:mcognetta,項目名稱:sage,代碼行數:23,代碼來源:yokonuma_hecke_algebra.py

示例4: __init__

# 需要導入模塊: from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing [as 別名]
# 或者: from sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing import parent [as 別名]
    def __init__(self, L, q=None):
        """
        Initialize ``self``.

        TESTS::

            sage: L = posets.BooleanLattice(4)
            sage: M = L.quantum_moebius_algebra()
            sage: TestSuite(M).run() # long time
        """
        if not L.is_lattice():
            raise ValueError("L must be a lattice")
        if q is None:
            q = LaurentPolynomialRing(ZZ, "q").gen()
        self._q = q
        R = q.parent()
        cat = Algebras(R).WithBasis()
        if L in FiniteEnumeratedSets():
            cat = cat.Commutative().FiniteDimensional()
        self._lattice = L
        self._category = cat
        Parent.__init__(self, base=R, category=self._category.WithRealizations())
開發者ID:sensen1,項目名稱:sage,代碼行數:24,代碼來源:moebius_algebra.py


注:本文中的sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing.parent方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。