當前位置: 首頁>>代碼示例>>Python>>正文


Python laurent_polynomial_ring.LaurentPolynomialRing類代碼示例

本文整理匯總了Python中sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing的典型用法代碼示例。如果您正苦於以下問題:Python LaurentPolynomialRing類的具體用法?Python LaurentPolynomialRing怎麽用?Python LaurentPolynomialRing使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了LaurentPolynomialRing類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

    def __init__(self, L, q=None):
        """
        Initialize ``self``.

        TESTS::

            sage: L = posets.BooleanLattice(4)
            sage: M = L.quantum_moebius_algebra()
            sage: TestSuite(M).run() # long time

            sage: from sage.combinat.posets.moebius_algebra import QuantumMoebiusAlgebra
            sage: L = posets.Crown(2)
            sage: QuantumMoebiusAlgebra(L)
            Traceback (most recent call last):
            ...
            ValueError: L must be a lattice
        """
        if not L.is_lattice():
            raise ValueError("L must be a lattice")
        if q is None:
            q = LaurentPolynomialRing(ZZ, 'q').gen()
        self._q = q
        R = q.parent()
        cat = Algebras(R).WithBasis()
        if L in FiniteEnumeratedSets():
            cat = cat.Commutative().FiniteDimensional()
        self._lattice = L
        self._category = cat
        Parent.__init__(self, base=R, category=self._category.WithRealizations())
開發者ID:sagemath,項目名稱:sage,代碼行數:29,代碼來源:moebius_algebra.py

示例2: __classcall__

    def __classcall__(cls, q=None, bar=None, R=None, **kwds):
        """
        Normalize input to ensure a unique representation.

        EXAMPLES::

            sage: R.<q> = LaurentPolynomialRing(ZZ)
            sage: O1 = algebras.QuantumMatrixCoordinate(4)
            sage: O2 = algebras.QuantumMatrixCoordinate(4, 4, q=q)
            sage: O3 = algebras.QuantumMatrixCoordinate(4, R=ZZ)
            sage: O4 = algebras.QuantumMatrixCoordinate(4, R=R, q=q)
            sage: O1 is O2 and O2 is O3 and O3 is O4
            True
            sage: O5 = algebras.QuantumMatrixCoordinate(4, R=QQ)
            sage: O1 is O5
            False
        """
        if R is None:
            R = ZZ
        else:
            if q is not None:
                q = R(q)
        if q is None:
            q = LaurentPolynomialRing(R, 'q').gen()
        return super(QuantumMatrixCoordinateAlgebra_abstract,
                     cls).__classcall__(cls,
                                        q=q, bar=bar, R=q.parent(), **kwds)
開發者ID:sagemath,項目名稱:sage,代碼行數:27,代碼來源:quantum_matrix_coordinate_algebra.py

示例3: __classcall_private__

    def __classcall_private__(cls, R, q=None):
        r"""
        Normalize input to ensure a unique representation.

        TESTS::

            sage: R.<q> = LaurentPolynomialRing(QQ)
            sage: AW1 = algebras.AskeyWilson(QQ)
            sage: AW2 = algebras.AskeyWilson(R, q)
            sage: AW1 is AW2
            True

            sage: AW = algebras.AskeyWilson(ZZ, 0)
            Traceback (most recent call last):
            ...
            ValueError: q cannot be 0

            sage: AW = algebras.AskeyWilson(ZZ, 3)
            Traceback (most recent call last):
            ...
            ValueError: q=3 is not invertible in Integer Ring
        """
        if q is None:
            R = LaurentPolynomialRing(R, 'q')
            q = R.gen()
        else:
            q = R(q)
        if q == 0:
            raise ValueError("q cannot be 0")
        if 1/q not in R:
            raise ValueError("q={} is not invertible in {}".format(q, R))
        if R not in Rings().Commutative():
            raise ValueError("{} is not a commutative ring".format(R))
        return super(AskeyWilsonAlgebra, cls).__classcall__(cls, R, q)
開發者ID:sagemath,項目名稱:sage,代碼行數:34,代碼來源:askey_wilson.py

示例4: q_int

def q_int(n, q=None):
    r"""
    Return the `q`-analog of the nonnegative integer `n`.

    The `q`-analog of the nonnegative integer `n` is given by

    .. MATH::

        [n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}
        = q^{n-1} + q^{n-3} + \cdots + q^{-n+3} + q^{-n+1}.

    INPUT:

    - ``n`` -- the nonnegative integer `n` defined above
    - ``q`` -- (default: `q \in \ZZ[q, q^{-1}]`) the parameter `q`
      (should be invertible)

    If ``q`` is unspecified, then it defaults to using the generator `q`
    for a Laurent polynomial ring over the integers.

    .. NOTE::

        This is not the "usual" `q`-analog of `n` (or `q`-integer) but
        a variant useful for quantum groups. For the version used in
        combinatorics, see :mod:`sage.combinat.q_analogues`.

    EXAMPLES::

        sage: from sage.algebras.quantum_groups.q_numbers import q_int
        sage: q_int(2)
        q^-1 + q
        sage: q_int(3)
        q^-2 + 1 + q^2
        sage: q_int(5)
        q^-4 + q^-2 + 1 + q^2 + q^4
        sage: q_int(5, 1)
        5

    TESTS::

        sage: from sage.algebras.quantum_groups.q_numbers import q_int
        sage: q_int(1)
        1
        sage: q_int(0)
        0
    """
    if q is None:
        R = LaurentPolynomialRing(ZZ, 'q')
        q = R.gen()
    else:
        R = q.parent()
    if n == 0:
        return R.zero()
    return R.sum(q**(n - 2 * i - 1) for i in range(n))
開發者ID:sagemath,項目名稱:sage,代碼行數:54,代碼來源:q_numbers.py

示例5: burau_matrix

    def burau_matrix(self, var='t'):
        """
        Return the Burau matrix of the braid.

        INPUT:

        - ``var`` -- string (default: ``'t'``). The name of the
          variable in the entries of the matrix.

        OUTPUT:

        The Burau matrix of the braid. It is a matrix whose entries
        are Laurent polynomials in the variable ``var``.

        EXAMPLES::

            sage: B = BraidGroup(4)
            sage: B.inject_variables()
            Defining s0, s1, s2
            sage: b=s0*s1/s2/s1
            sage: b.burau_matrix()
            [     -t + 1           0    -t^2 + t         t^2]
            [          1           0           0           0]
            [          0           0           1           0]
            [          0        t^-2 t^-1 - t^-2    1 - t^-1]
            sage: s2.burau_matrix('x')
            [     1      0      0      0]
            [     0      1      0      0]
            [     0      0 -x + 1      x]
            [     0      0      1      0]

        REFERENCES:

            http://en.wikipedia.org/wiki/Burau_representation
        """
        R = LaurentPolynomialRing(IntegerRing(), var)
        t = R.gen()
        M = identity_matrix(R, self.strands())
        for i in self.Tietze():
            A = identity_matrix(R, self.strands())
            if i>0:
                A[i-1, i-1] = 1-t
                A[i, i] = 0
                A[i, i-1] = 1
                A[i-1, i] = t
            if i<0:
                A[-1-i, -1-i] = 0
                A[-i, -i] = 1-t**(-1)
                A[-1-i, -i] = 1
                A[-i, -1-i] = t**(-1)
            M=M*A
        return M
開發者ID:CETHop,項目名稱:sage,代碼行數:52,代碼來源:braid.py

示例6: __classcall_private__

    def __classcall_private__(cls, d, n, q=None, R=None):
        """
        Standardize input to ensure a unique representation.

        TESTS::

            sage: Y1 = algebras.YokonumaHecke(5, 3)
            sage: q = LaurentPolynomialRing(QQ, 'q').gen()
            sage: Y2 = algebras.YokonumaHecke(5, 3, q)
            sage: Y3 = algebras.YokonumaHecke(5, 3, q, q.parent())
            sage: Y1 is Y2 and Y2 is Y3
            True
        """
        if q is None:
            q = LaurentPolynomialRing(QQ, 'q').gen()
        if R is None:
            R = q.parent()
        q = R(q)
        if R not in Rings().Commutative():
            raise TypeError("base ring must be a commutative ring")
        return super(YokonumaHeckeAlgebra, cls).__classcall__(cls, d, n, q, R)
開發者ID:mcognetta,項目名稱:sage,代碼行數:21,代碼來源:yokonuma_hecke_algebra.py

示例7: __init__

    def __init__(self, L, q=None):
        """
        Initialize ``self``.

        TESTS::

            sage: L = posets.BooleanLattice(4)
            sage: M = L.quantum_moebius_algebra()
            sage: TestSuite(M).run() # long time
        """
        if not L.is_lattice():
            raise ValueError("L must be a lattice")
        if q is None:
            q = LaurentPolynomialRing(ZZ, "q").gen()
        self._q = q
        R = q.parent()
        cat = Algebras(R).WithBasis()
        if L in FiniteEnumeratedSets():
            cat = cat.Commutative().FiniteDimensional()
        self._lattice = L
        self._category = cat
        Parent.__init__(self, base=R, category=self._category.WithRealizations())
開發者ID:sensen1,項目名稱:sage,代碼行數:22,代碼來源:moebius_algebra.py

示例8: __init__

    def __init__(self, *args):
        if len(args) == 1 and isinstance(args[0], AbstractMSumRing):
            self._laurent_polynomial_ring = args[0]._laurent_polynomial_ring
            self._free_module = args[0]._free_module
            self._laurent_polynomial_ring_extra_var = args[0]._laurent_polynomial_ring_extra_var
        else:
            from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing
            from sage.modules.free_module import FreeModule
            self._laurent_polynomial_ring = LaurentPolynomialRing(QQ, *args)
            dim = ZZ(self._laurent_polynomial_ring.ngens())
            self._free_module = FreeModule(ZZ, dim)

            # univariate extension of the polynomial ring
            # (needed in several algorithms)
            self._laurent_polynomial_ring_extra_var = self._laurent_polynomial_ring['EXTRA_VAR']

        Parent.__init__(self, category=Rings())
開發者ID:videlec,項目名稱:flatsurf-package,代碼行數:17,代碼來源:multivariate_generating_series.py

示例9: ClusterAlgebra

class ClusterAlgebra(Parent):
    r"""
    INPUT:

    - ``data`` -- some data defining a cluster algebra.

    - ``scalars`` -- (default ZZ) the scalars on which the cluster algebra
      is defined.

    - ``cluster_variables_prefix`` -- string (default 'x').

    - ``cluster_variables_names`` -- a list of strings.  Superseedes
      ``cluster_variables_prefix``.

    - ``coefficients_prefix`` -- string (default 'y').

    - ``coefficients_names`` -- a list of strings. Superseedes
      ``cluster_variables_prefix``.

    - ``principal_coefficients`` -- bool (default: False). Superseedes any
      coefficient defined by ``data``.
    """

    Element = ClusterAlgebraElement

    def __init__(self, data, **kwargs):
        r"""
        See :class:`ClusterAlgebra` for full documentation.
        """
        # TODO: right now we use ClusterQuiver to parse input data. It looks like a good idea but we should make sure it is.
        # TODO: in base replace LaurentPolynomialRing with the group algebra of a tropical semifield once it is implemented

        # Temporary variables
        Q = ClusterQuiver(data)
        n = Q.n()
        B0 = Q.b_matrix()[:n,:]
        I = identity_matrix(n)
        if 'principal_coefficients' in kwargs and kwargs['principal_coefficients']:
            M0 = I
        else:
            M0 = Q.b_matrix()[n:,:]
        m = M0.nrows()

        # Ambient space for F-polynomials
        # NOTE: for speed purposes we need to have QQ here instead of the more natural ZZ. The reason is that _mutated_F is faster if we do not cast the result to polynomials but then we get "rational" coefficients
        self._U = PolynomialRing(QQ, ['u%s'%i for i in xrange(n)])

        # Storage for computed data
        self._path_dict = dict([ (v, []) for v in map(tuple,I.columns()) ])
        self._F_poly_dict = dict([ (v, self._U(1)) for v in self._path_dict ])

        # Determine the names of the initial cluster variables
        if 'cluster_variables_names' in kwargs:
            if len(kwargs['cluster_variables_names']) == n:
                variables = kwargs['cluster_variables_names']
                cluster_variables_prefix='dummy' # this is just to avoid checking again if cluster_variables_prefix is defined. Make this better before going public
            else:
                    raise ValueError("cluster_variables_names should be a list of %d valid variable names"%n)
        else:
            try:
                cluster_variables_prefix = kwargs['cluster_variables_prefix']
            except:
                cluster_variables_prefix = 'x'
            variables = [cluster_variables_prefix+'%s'%i for i in xrange(n)]
            # why not just put str(i) instead of '%s'%i?

        # Determine scalars
        try:
            scalars = kwargs['scalars']
        except:
            scalars = ZZ

        # Determine coefficients and setup self._base
        if m>0:
            if 'coefficients_names' in kwargs:
                if len(kwargs['coefficients_names']) == m:
                    coefficients = kwargs['coefficients_names']
                else:
                    raise ValueError("coefficients_names should be a list of %d valid variable names"%m)
            else:
                try:
                    coefficients_prefix = kwargs['coefficients_prefix']
                except:
                    coefficients_prefix = 'y'
                if coefficients_prefix == cluster_variables_prefix:
                    offset = n
                else:
                    offset = 0
                coefficients = [coefficients_prefix+'%s'%i for i in xrange(offset,m+offset)]
            # TODO: (***) base should eventually become the group algebra of a tropical semifield
            base = LaurentPolynomialRing(scalars, coefficients)
        else:
            base = scalars
            # TODO: next line should be removed when (***) is implemented
            coefficients = []

        # setup Parent and ambient
        # TODO: (***) _ambient should eventually be replaced with LaurentPolynomialRing(base, variables)
        self._ambient = LaurentPolynomialRing(scalars, variables+coefficients)
        self._ambient_field = self._ambient.fraction_field()
#.........這裏部分代碼省略.........
開發者ID:Etn40ff,項目名稱:level_zero,代碼行數:101,代碼來源:cluster_algebra.py

示例10: Omega_ge

def Omega_ge(a, exponents):
    r"""
    Return `\Omega_{\ge}` of the expression specified by the input.

    To be more precise, calculate

    .. MATH::

        \Omega_{\ge} \frac{\mu^a}{
        (1 - z_0 \mu^{e_0}) \dots (1 - z_{n-1} \mu^{e_{n-1}})}

    and return its numerator and a factorization of its denominator.
    Note that `z_0`, ..., `z_{n-1}` only appear in the output, but not in the
    input.

    INPUT:

    - ``a`` -- an integer

    - ``exponents`` -- a tuple of integers

    OUTPUT:

    A pair representing a quotient as follows: Its first component is the
    numerator as a Laurent polynomial, its second component a factorization
    of the denominator as a tuple of Laurent polynomials, where each
    Laurent polynomial `z` represents a factor `1 - z`.

    The parents of these Laurent polynomials is always a
    Laurent polynomial ring in `z_0`, ..., `z_{n-1}` over `\ZZ`, where
    `n` is the length of ``exponents``.

    EXAMPLES::

        sage: from sage.rings.polynomial.omega import Omega_ge
        sage: Omega_ge(0, (1, -2))
        (1, (z0, z0^2*z1))
        sage: Omega_ge(0, (1, -3))
        (1, (z0, z0^3*z1))
        sage: Omega_ge(0, (1, -4))
        (1, (z0, z0^4*z1))

        sage: Omega_ge(0, (2, -1))
        (z0*z1 + 1, (z0, z0*z1^2))
        sage: Omega_ge(0, (3, -1))
        (z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3))
        sage: Omega_ge(0, (4, -1))
        (z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4))

        sage: Omega_ge(0, (1, 1, -2))
        (-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2))
        sage: Omega_ge(0, (2, -1, -1))
        (z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))
        sage: Omega_ge(0, (2, 1, -1))
        (-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))

    ::

        sage: Omega_ge(0, (2, -2))
        (-z0*z1 + 1, (z0, z0*z1, z0*z1))
        sage: Omega_ge(0, (2, -3))
        (z0^2*z1 + 1, (z0, z0^3*z1^2))
        sage: Omega_ge(0, (3, 1, -3))
        (-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2
         + z0^2*z2^2 - 2*z0*z2 + 1,
         (z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))

    ::

        sage: Omega_ge(0, (3, 6, -1))
        (-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 +
         z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 -
         z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1,
         (z0, z1, z0*z2^3, z1*z2^6))

    TESTS::

        sage: Omega_ge(0, (2, 2, 1, 1, 1, 1, 1, -1, -1))[0].number_of_terms()  # long time
        27837

    ::

        sage: Omega_ge(1, (2,))
        (1, (z0,))
    """
    import logging
    logger = logging.getLogger(__name__)
    logger.info('Omega_ge: a=%s, exponents=%s', a, exponents)

    from sage.arith.all import lcm, srange
    from sage.rings.integer_ring import ZZ
    from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing
    from sage.rings.number_field.number_field import CyclotomicField

    if not exponents or any(e == 0 for e in exponents):
        raise NotImplementedError

    rou = sorted(set(abs(e) for e in exponents) - set([1]))
    ellcm = lcm(rou)
    B = CyclotomicField(ellcm, 'zeta')
#.........這裏部分代碼省略.........
開發者ID:mcognetta,項目名稱:sage,代碼行數:101,代碼來源:omega.py

示例11: _LKB_matrix_

    def _LKB_matrix_(self, braid, variab):
        """
        Compute the Lawrence-Krammer-Bigelow representation matrix.

        The variables of the matrix must be given. This actual
        computation is done in this helper method for caching
        purposes.

        INPUT:

        - ``braid`` -- tuple of integers. The Tietze list of the
          braid.

        - ``variab`` -- string. the names of the variables that will
          appear in the matrix. They must be given as a string,
          separated by a comma

        OUTPUT:

        The LKB matrix of the braid, with respect to the variables.

        TESTS::

            sage: B=BraidGroup(3)
            sage: B._LKB_matrix_((2, 1, 2), 'x, y')
            [             0 -x^4*y + x^3*y         -x^4*y]
            [             0         -x^3*y              0]
            [        -x^2*y  x^3*y - x^2*y              0]
            sage: B._LKB_matrix_((1, 2, 1), 'x, y')
            [             0 -x^4*y + x^3*y         -x^4*y]
            [             0         -x^3*y              0]
            [        -x^2*y  x^3*y - x^2*y              0]
            sage: B._LKB_matrix_((-1, -2, -1, 2, 1, 2), 'x, y')
            [1 0 0]
            [0 1 0]
            [0 0 1]
        """
        n = self.strands()
        if len(braid)>1:
            A = self._LKB_matrix_(braid[:1], variab)
            for i in braid[1:]:
                A = A*self._LKB_matrix_((i,), variab)
            return A
        l = list(Set(range(n)).subsets(2))
        R = LaurentPolynomialRing(IntegerRing(), variab)
        q = R.gens()[0]
        t = R.gens()[1]
        if len(braid)==0:
            return identity_matrix(R, len(l), sparse=True)
        A = matrix(R, len(l), sparse=True)
        if braid[0]>0:
            i = braid[0]-1
            for m in range(len(l)):
                j = min(l[m])
                k = max(l[m])
                if i==j-1:
                    A[l.index(Set([i, k])), m] = q
                    A[l.index(Set([i, j])), m] = q*q-q
                    A[l.index(Set([j, k])), m] = 1-q
                elif i==j and not j==k-1:
                    A[l.index(Set([j, k])), m] = 0
                    A[l.index(Set([j+1, k])), m] = 1
                elif k-1==i and not k-1==j:
                    A[l.index(Set([j, i])), m] = q
                    A[l.index(Set([j, k])), m] = 1-q
                    A[l.index(Set([i, k])), m] = (1-q)*q*t
                elif i==k:
                    A[l.index(Set([j, k])), m] = 0
                    A[l.index(Set([j, k+1])), m] = 1
                elif i==j and j==k-1:
                    A[l.index(Set([j, k])), m] = -t*q*q
                else:
                    A[l.index(Set([j, k])), m] = 1
            return A
        else:
            i = -braid[0]-1
            for m in range(len(l)):
                j = min(l[m])
                k = max(l[m])
                if i==j-1:
                    A[l.index(Set([j-1, k])), m] = 1
                elif i==j and not j==k-1:
                    A[l.index(Set([j+1, k])), m] = q**(-1)
                    A[l.index(Set([j, k])), m] = 1-q**(-1)
                    A[l.index(Set([j, j+1])), m] = t**(-1)*q**(-1)-t**(-1)*q**(-2)
                elif k-1==i and not k-1==j:
                    A[l.index(Set([j, k-1])), m] = 1
                elif i==k:
                    A[l.index(Set([j, k+1])), m] = q**(-1)
                    A[l.index(Set([j, k])), m] = 1-q**(-1)
                    A[l.index(Set([k, k+1])), m] = -q**(-1)+q**(-2)
                elif i==j and j==k-1:
                    A[l.index(Set([j, k])), m] = -t**(-1)*q**(-2)
                else:
                    A[l.index(Set([j, k])), m] = 1
            return A
開發者ID:CETHop,項目名稱:sage,代碼行數:96,代碼來源:braid.py

示例12: alexander_polynomial

    def alexander_polynomial(self, var='t', normalized=True):
        r"""
        Return the Alexander polynomial of the closure of the braid.

        INPUT:

        - ``var`` -- string (default: ``'t'``); the name of the
          variable in the entries of the matrix
        - ``normalized`` -- boolean (default: ``True``); whether to
          return the normalized Alexander polynomial

        OUTPUT:

        The Alexander polynomial of the braid closure of the braid.

        This is computed using the reduced Burau representation. The
        unnormalized Alexander polynomial is a Laurent polynomial,
        which is only well-defined up to multiplication by plus or
        minus times a power of `t`.

        We normalize the polynomial by dividing by the largest power
        of `t` and then if the resulting constant coefficient
        is negative, we multiply by `-1`.

        EXAMPLES:

        We first construct the trefoil::

            sage: B = BraidGroup(3)
            sage: b = B([1,2,1,2])
            sage: b.alexander_polynomial(normalized=False)
            1 - t + t^2
            sage: b.alexander_polynomial()
            t^-2 - t^-1 + 1

        Next we construct the figure 8 knot::

            sage: b = B([-1,2,-1,2])
            sage: b.alexander_polynomial(normalized=False)
            -t^-2 + 3*t^-1 - 1
            sage: b.alexander_polynomial()
            t^-2 - 3*t^-1 + 1

        Our last example is the Kinoshita-Terasaka knot::

            sage: B = BraidGroup(4)
            sage: b = B([1,1,1,3,3,2,-3,-1,-1,2,-1,-3,-2])
            sage: b.alexander_polynomial(normalized=False)
            -t^-1
            sage: b.alexander_polynomial()
            1

        REFERENCES:

        - :wikipedia:`Alexander_polynomial`
        """
        n = self.strands()
        p = (self.burau_matrix(reduced=True) - identity_matrix(n - 1)).det()
        K, t = LaurentPolynomialRing(IntegerRing(), var).objgen()
        if p == 0:
            return K.zero()
        qn = sum(t ** i for i in range(n))
        p //= qn
        if normalized:
            p *= t ** (-p.degree())
            if p.constant_coefficient() < 0:
                p = -p
        return p
開發者ID:JoseGuzman,項目名稱:sage,代碼行數:68,代碼來源:braid.py

示例13: burau_matrix

    def burau_matrix(self, var='t', reduced=False):
        """
        Return the Burau matrix of the braid.

        INPUT:

        - ``var`` -- string (default: ``'t'``); the name of the
          variable in the entries of the matrix
        - ``reduced`` -- boolean (default: ``False``); whether to
          return the reduced or unreduced Burau representation

        OUTPUT:

        The Burau matrix of the braid. It is a matrix whose entries
        are Laurent polynomials in the variable ``var``. If ``reduced``
        is ``True``, return the matrix for the reduced Burau representation
        instead.

        EXAMPLES::

            sage: B = BraidGroup(4)
            sage: B.inject_variables()
            Defining s0, s1, s2
            sage: b = s0*s1/s2/s1
            sage: b.burau_matrix()
            [       1 - t            0      t - t^2          t^2]
            [           1            0            0            0]
            [           0            0            1            0]
            [           0         t^-2 -t^-2 + t^-1    -t^-1 + 1]
            sage: s2.burau_matrix('x')
            [    1     0     0     0]
            [    0     1     0     0]
            [    0     0 1 - x     x]
            [    0     0     1     0]
            sage: s0.burau_matrix(reduced=True)
            [-t  0  0]
            [-t  1  0]
            [-t  0  1]

        REFERENCES:

        - :wikipedia:`Burau_representation`
        """
        R = LaurentPolynomialRing(IntegerRing(), var)
        t = R.gen()
        n = self.strands()
        if not reduced:
            M = identity_matrix(R, n)
            for i in self.Tietze():
                A = identity_matrix(R, n)
                if i > 0:
                    A[i-1, i-1] = 1-t
                    A[i, i] = 0
                    A[i, i-1] = 1
                    A[i-1, i] = t
                if i < 0:
                    A[-1-i, -1-i] = 0
                    A[-i, -i] = 1-t**(-1)
                    A[-1-i, -i] = 1
                    A[-i, -1-i] = t**(-1)
                M = M * A
        else:
            M = identity_matrix(R, n - 1)
            for j in self.Tietze():
                A = identity_matrix(R, n - 1)
                if j > 1:
                    i = j-1
                    A[i-1, i-1] = 1-t
                    A[i, i] = 0
                    A[i, i-1] = 1
                    A[i-1, i] = t
                if j < -1:
                    i = j+1
                    A[-1-i, -1-i] = 0
                    A[-i, -i] = 1-t**(-1)
                    A[-1-i, -i] = 1
                    A[-i, -1-i] = t**(-1)
                if j == 1:
                    for k in range(n - 1):
                        A[k,0] = -t
                if j == -1:
                    A[0,0] = -t**(-1)
                    for k in range(1, n - 1):
                        A[k,0] = -1
                M = M * A
        return M
開發者ID:JoseGuzman,項目名稱:sage,代碼行數:86,代碼來源:braid.py

示例14: __init__

    def __init__(self, data, **kwargs):
        r"""
        See :class:`ClusterAlgebra` for full documentation.
        """
        # TODO: right now we use ClusterQuiver to parse input data. It looks like a good idea but we should make sure it is.
        # TODO: in base replace LaurentPolynomialRing with the group algebra of a tropical semifield once it is implemented

        # Temporary variables
        Q = ClusterQuiver(data)
        n = Q.n()
        B0 = Q.b_matrix()[:n,:]
        I = identity_matrix(n)
        if 'principal_coefficients' in kwargs and kwargs['principal_coefficients']:
            M0 = I
        else:
            M0 = Q.b_matrix()[n:,:]
        m = M0.nrows()

        # Ambient space for F-polynomials
        # NOTE: for speed purposes we need to have QQ here instead of the more natural ZZ. The reason is that _mutated_F is faster if we do not cast the result to polynomials but then we get "rational" coefficients
        self._U = PolynomialRing(QQ, ['u%s'%i for i in xrange(n)])

        # Storage for computed data
        self._path_dict = dict([ (v, []) for v in map(tuple,I.columns()) ])
        self._F_poly_dict = dict([ (v, self._U(1)) for v in self._path_dict ])

        # Determine the names of the initial cluster variables
        if 'cluster_variables_names' in kwargs:
            if len(kwargs['cluster_variables_names']) == n:
                variables = kwargs['cluster_variables_names']
                cluster_variables_prefix='dummy' # this is just to avoid checking again if cluster_variables_prefix is defined. Make this better before going public
            else:
                    raise ValueError("cluster_variables_names should be a list of %d valid variable names"%n)
        else:
            try:
                cluster_variables_prefix = kwargs['cluster_variables_prefix']
            except:
                cluster_variables_prefix = 'x'
            variables = [cluster_variables_prefix+'%s'%i for i in xrange(n)]
            # why not just put str(i) instead of '%s'%i?

        # Determine scalars
        try:
            scalars = kwargs['scalars']
        except:
            scalars = ZZ

        # Determine coefficients and setup self._base
        if m>0:
            if 'coefficients_names' in kwargs:
                if len(kwargs['coefficients_names']) == m:
                    coefficients = kwargs['coefficients_names']
                else:
                    raise ValueError("coefficients_names should be a list of %d valid variable names"%m)
            else:
                try:
                    coefficients_prefix = kwargs['coefficients_prefix']
                except:
                    coefficients_prefix = 'y'
                if coefficients_prefix == cluster_variables_prefix:
                    offset = n
                else:
                    offset = 0
                coefficients = [coefficients_prefix+'%s'%i for i in xrange(offset,m+offset)]
            # TODO: (***) base should eventually become the group algebra of a tropical semifield
            base = LaurentPolynomialRing(scalars, coefficients)
        else:
            base = scalars
            # TODO: next line should be removed when (***) is implemented
            coefficients = []

        # setup Parent and ambient
        # TODO: (***) _ambient should eventually be replaced with LaurentPolynomialRing(base, variables)
        self._ambient = LaurentPolynomialRing(scalars, variables+coefficients)
        self._ambient_field = self._ambient.fraction_field()
        # TODO: understand why using Algebras() instead of Rings() makes A(1) complain of missing _lmul_
        Parent.__init__(self, base=base, category=Rings(scalars).Commutative().Subobjects(), names=variables+coefficients)

        # Data to compute cluster variables using separation of additions
        # BUG WORKAROUND: if your sage installation does not have trac:`19538` merged uncomment the following line and comment the next
        self._y = dict([ (self._U.gen(j), prod([self._ambient.gen(n+i)**M0[i,j] for i in xrange(m)])) for j in xrange(n)])
        #self._y = dict([ (self._U.gen(j), prod([self._base.gen(i)**M0[i,j] for i in xrange(m)])) for j in xrange(n)])
        self._yhat = dict([ (self._U.gen(j), prod([self._ambient.gen(i)**B0[i,j] for i in xrange(n)])*self._y[self._U.gen(j)]) for j in xrange(n)])

        # Have we principal coefficients?
        self._is_principal = (M0 == I)

        # Store initial data
        self._B0 = copy(B0)
        self._n = n
        self.reset_current_seed()

        # Internal data for exploring the exchange graph
        self.reset_exploring_iterator()

        # Internal data to store exchange relations
        # This is a dictionary indexed by a frozen set of two g-vectors (the g-vectors of the exchanged variables)
        # Exchange relations are, for the moment, a frozen set of precisely two entries (one for each term in the exchange relation's RHS).
        # Each of them contains two things
        # 1) a list of pairs (g-vector, exponent) one for each cluster variable appearing in the term
#.........這裏部分代碼省略.........
開發者ID:Etn40ff,項目名稱:level_zero,代碼行數:101,代碼來源:cluster_algebra.py

示例15: loop_representation


#.........這裏部分代碼省略.........
                \lambda^{-1} & 0 \\ \lambda - 1 & \lambda
            \end{pmatrix},
            \qquad
            \mathcal{C} = \begin{pmatrix}
                1 & \lambda - 1 \\ 1 - \lambda^{-1} & \lambda + \lambda^{-1} - 1
            \end{pmatrix}.

        From Lemma 3.11 of [Terwilliger2011]_, we define a
        representation `\pi: AW \to M` by

        .. MATH::

            A \mapsto q \mathcal{A} + q^{-1} \mathcal{A}^{-1},
            \qquad
            B \mapsto q \mathcal{B} + q^{-1} \mathcal{B}^{-1},
            \qquad
            C \mapsto q \mathcal{C} + q^{-1} \mathcal{C}^{-1},

        .. MATH::

            \alpha, \beta, \gamma \mapsto \nu I,

        where `\nu = (q^2 + q^-2)(\lambda + \lambda^{-1})
        + (\lambda + \lambda^{-1})^2`.

        We call this representation the *loop representation* as
        it is a representation using the loop group
        `SL_2(F[\lambda,\lambda^{-1}])`.

        EXAMPLES::

            sage: AW = algebras.AskeyWilson(QQ)
            sage: q = AW.q()
            sage: pi = AW.loop_representation()
            sage: A,B,C,a,b,g = [pi(gen) for gen in AW.algebra_generators()]
            sage: A
            [                1/q*lambda^-1 + q*lambda ((-q^2 + 1)/q)*lambda^-1 + ((q^2 - 1)/q)]
            [                                       0                 q*lambda^-1 + 1/q*lambda]
            sage: B
            [             q*lambda^-1 + 1/q*lambda                                     0]
            [((-q^2 + 1)/q) + ((q^2 - 1)/q)*lambda              1/q*lambda^-1 + q*lambda]
            sage: C
            [1/q*lambda^-1 + ((q^2 - 1)/q) + 1/q*lambda      ((q^2 - 1)/q) + ((-q^2 + 1)/q)*lambda]
            [  ((q^2 - 1)/q)*lambda^-1 + ((-q^2 + 1)/q)    q*lambda^-1 + ((-q^2 + 1)/q) + q*lambda]
            sage: a
            [lambda^-2 + ((q^4 + 1)/q^2)*lambda^-1 + 2 + ((q^4 + 1)/q^2)*lambda + lambda^2                                                                             0]
            [                                                                            0 lambda^-2 + ((q^4 + 1)/q^2)*lambda^-1 + 2 + ((q^4 + 1)/q^2)*lambda + lambda^2]
            sage: a == b
            True
            sage: a == g
            True

            sage: AW.an_element()
            (q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
            sage: x = pi(AW.an_element())
            sage: y = (q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
            sage: x == y
            True

        We check the defining relations of the Askey-Wilson algebra::

            sage: A + (q*B*C - q^-1*C*B) / (q^2 - q^-2) == a / (q + q^-1)
            True
            sage: B + (q*C*A - q^-1*A*C) / (q^2 - q^-2) == b / (q + q^-1)
            True
            sage: C + (q*A*B - q^-1*B*A) / (q^2 - q^-2) == g / (q + q^-1)
            True

        We check Lemma 3.12 in [Terwilliger2011]_::

            sage: M = pi.codomain()
            sage: la = M.base_ring().gen()
            sage: p = M([[0,-1],[1,1]])
            sage: s = M([[0,1],[la,0]])
            sage: rho = AW.rho()
            sage: sigma = AW.sigma()
            sage: all(p*pi(gen)*~p == pi(rho(gen)) for gen in AW.algebra_generators())
            True
            sage: all(s*pi(gen)*~s == pi(sigma(gen)) for gen in AW.algebra_generators())
            True
        """
        from sage.matrix.matrix_space import MatrixSpace
        q = self._q
        base = LaurentPolynomialRing(self.base_ring().fraction_field(), 'lambda')
        la = base.gen()
        inv = ~la
        M = MatrixSpace(base, 2)
        A = M([[la,1-inv],[0,inv]])
        Ai = M([[inv,inv-1],[0,la]])
        B = M([[inv,0],[la-1,la]])
        Bi = M([[la,0],[1-la,inv]])
        C = M([[1,1-la],[inv-1,la+inv-1]])
        Ci = M([[la+inv-1,la-1],[1-inv,1]])
        mu = la + inv
        nu = (self._q**2 + self._q**-2) * mu + mu**2
        nuI = M(nu)
        category = Algebras(Rings().Commutative())
        return AlgebraMorphism(self, [q*A + q**-1*Ai, q*B + q**-1*Bi, q*C + q**-1*Ci,
                                      nuI, nuI, nuI],
                               codomain=M, category=category)
開發者ID:sagemath,項目名稱:sage,代碼行數:101,代碼來源:askey_wilson.py


注:本文中的sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。