本文整理匯總了Python中sage.libs.ppl.C_Polyhedron.relation_with方法的典型用法代碼示例。如果您正苦於以下問題:Python C_Polyhedron.relation_with方法的具體用法?Python C_Polyhedron.relation_with怎麽用?Python C_Polyhedron.relation_with使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sage.libs.ppl.C_Polyhedron
的用法示例。
在下文中一共展示了C_Polyhedron.relation_with方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: has_IP_property
# 需要導入模塊: from sage.libs.ppl import C_Polyhedron [as 別名]
# 或者: from sage.libs.ppl.C_Polyhedron import relation_with [as 別名]
def has_IP_property(self):
"""
Whether the lattice polytope has the IP property.
That is, the polytope is full-dimensional and the origin is a
interior point not on the boundary.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((-1,-1),(0,1),(1,0)).has_IP_property()
True
sage: LatticePolytope_PPL((-1,-1),(1,1)).has_IP_property()
False
"""
origin = C_Polyhedron(point(0*Variable(self.space_dimension())))
is_included = Poly_Con_Relation.is_included()
saturates = Poly_Con_Relation.saturates()
for c in self.constraints():
rel = origin.relation_with(c)
if (not rel.implies(is_included)) or rel.implies(saturates):
return False
return True
示例2: vertices_saturating
# 需要導入模塊: from sage.libs.ppl import C_Polyhedron [as 別名]
# 或者: from sage.libs.ppl.C_Polyhedron import relation_with [as 別名]
def vertices_saturating(self, constraint):
"""
Return the vertices saturating the constraint
INPUT:
- ``constraint`` -- a constraint (inequality or equation) of
the polytope.
OUTPUT:
The tuple of vertices saturating the constraint. The vertices
are returned as `\ZZ`-vectors, as in :meth:`vertices`.
EXAMPLES::
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: p = LatticePolytope_PPL((0,0),(0,1),(1,0))
sage: ieq = next(iter(p.constraints())); ieq
x0>=0
sage: p.vertices_saturating(ieq)
((0, 0), (0, 1))
"""
from sage.libs.ppl import C_Polyhedron, Poly_Con_Relation
result = []
for i,v in enumerate(self.minimized_generators()):
v = C_Polyhedron(v)
if v.relation_with(constraint).implies(Poly_Con_Relation.saturates()):
result.append(self.vertices()[i])
return tuple(result)
示例3: contains
# 需要導入模塊: from sage.libs.ppl import C_Polyhedron [as 別名]
# 或者: from sage.libs.ppl.C_Polyhedron import relation_with [as 別名]
def contains(self, point_coordinates):
r"""
Test whether point is contained in the polytope.
INPUT:
- ``point_coordinates`` -- a list/tuple/iterable of rational
numbers. The coordinates of the point.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: line = LatticePolytope_PPL((1,2,3), (-1,-2,-3))
sage: line.contains([0,0,0])
True
sage: line.contains([1,0,0])
False
"""
p = C_Polyhedron(point(Linear_Expression(list(point_coordinates), 1)))
is_included = Poly_Con_Relation.is_included()
for c in self.constraints():
if not p.relation_with(c).implies(is_included):
return False
return True
示例4: find_isomorphism
# 需要導入模塊: from sage.libs.ppl import C_Polyhedron [as 別名]
# 或者: from sage.libs.ppl.C_Polyhedron import relation_with [as 別名]
def find_isomorphism(self, polytope):
"""
Return a lattice isomorphism with ``polytope``.
INPUT:
- ``polytope`` -- a polytope, potentially higher-dimensional.
OUTPUT:
A
:class:`~sage.geometry.polyhedron.lattice_euclidean_group_element.LatticeEuclideanGroupElement`. It
is not necessarily invertible if the affine dimension of
``self`` or ``polytope`` is not two. A
:class:`~sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopesNotIsomorphicError`
is raised if no such isomorphism exists.
EXAMPLES::
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: L1 = LatticePolytope_PPL((1,0),(0,1),(0,0))
sage: L2 = LatticePolytope_PPL((1,0,3),(0,1,0),(0,0,1))
sage: iso = L1.find_isomorphism(L2)
sage: iso(L1) == L2
True
sage: L1 = LatticePolytope_PPL((0, 1), (3, 0), (0, 3), (1, 0))
sage: L2 = LatticePolytope_PPL((0,0,2,1),(0,1,2,0),(2,0,0,3),(2,3,0,0))
sage: iso = L1.find_isomorphism(L2)
sage: iso(L1) == L2
True
The following polygons are isomorphic over `\QQ`, but not as
lattice polytopes::
sage: L1 = LatticePolytope_PPL((1,0),(0,1),(-1,-1))
sage: L2 = LatticePolytope_PPL((0, 0), (0, 1), (1, 0))
sage: L1.find_isomorphism(L2)
Traceback (most recent call last):
...
LatticePolytopesNotIsomorphicError: different number of integral points
sage: L2.find_isomorphism(L1)
Traceback (most recent call last):
...
LatticePolytopesNotIsomorphicError: different number of integral points
"""
from sage.geometry.polyhedron.lattice_euclidean_group_element import \
LatticePolytopesNotIsomorphicError
if polytope.affine_dimension() != self.affine_dimension():
raise LatticePolytopesNotIsomorphicError('different dimension')
polytope_vertices = polytope.vertices()
if len(polytope_vertices) != self.n_vertices():
raise LatticePolytopesNotIsomorphicError('different number of vertices')
self_vertices = self.ordered_vertices()
if len(polytope.integral_points()) != len(self.integral_points()):
raise LatticePolytopesNotIsomorphicError('different number of integral points')
if len(self_vertices) < 3:
return self._find_isomorphism_degenerate(polytope)
polytope_origin = polytope_vertices[0]
origin_P = C_Polyhedron(next(Generator_System_iterator(
polytope.minimized_generators())))
neighbors = []
for c in polytope.minimized_constraints():
if not c.is_inequality():
continue
if origin_P.relation_with(c).implies(Poly_Con_Relation.saturates()):
for i, g in enumerate(polytope.minimized_generators()):
if i == 0:
continue
g = C_Polyhedron(g)
if g.relation_with(c).implies(Poly_Con_Relation.saturates()):
neighbors.append(polytope_vertices[i])
break
p_ray_left = neighbors[0] - polytope_origin
p_ray_right = neighbors[1] - polytope_origin
try:
return self._find_cyclic_isomorphism_matching_edge(polytope, polytope_origin,
p_ray_left, p_ray_right)
except LatticePolytopesNotIsomorphicError:
pass
try:
return self._find_cyclic_isomorphism_matching_edge(polytope, polytope_origin,
p_ray_right, p_ray_left)
except LatticePolytopesNotIsomorphicError:
pass
raise LatticePolytopesNotIsomorphicError('different polygons')