當前位置: 首頁>>代碼示例>>Python>>正文


Python C_Polyhedron.minimized_constraints方法代碼示例

本文整理匯總了Python中sage.libs.ppl.C_Polyhedron.minimized_constraints方法的典型用法代碼示例。如果您正苦於以下問題:Python C_Polyhedron.minimized_constraints方法的具體用法?Python C_Polyhedron.minimized_constraints怎麽用?Python C_Polyhedron.minimized_constraints使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sage.libs.ppl.C_Polyhedron的用法示例。


在下文中一共展示了C_Polyhedron.minimized_constraints方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Polyhedron_QQ_ppl

# 需要導入模塊: from sage.libs.ppl import C_Polyhedron [as 別名]
# 或者: from sage.libs.ppl.C_Polyhedron import minimized_constraints [as 別名]

#.........這裏部分代碼省略.........
        """
        cs = Constraint_System()
        if ieqs is None: ieqs = []
        for ieq in ieqs:
            d = lcm([denominator(ieq_i) for ieq_i in ieq])
            dieq = [ ZZ(d*ieq_i) for ieq_i in ieq ]
            b = dieq[0]
            A = dieq[1:]
            cs.insert(Linear_Expression(A, b) >= 0)
        if eqns is None: eqns = []
        for eqn in eqns:
            d = lcm([denominator(eqn_i) for eqn_i in eqn])
            deqn = [ ZZ(d*eqn_i) for eqn_i in eqn ]
            b = deqn[0]
            A = deqn[1:]
            cs.insert(Linear_Expression(A, b) == 0)
        self._ppl_polyhedron = C_Polyhedron(cs)
        self._init_Vrepresentation_from_ppl(minimize)
        self._init_Hrepresentation_from_ppl(minimize)

        
    def _init_Vrepresentation_from_ppl(self, minimize):
        """
        Create the Vrepresentation objects from the ppl polyhedron.
        
        EXAMPLES::

            sage: p = Polyhedron(vertices=[(0,1/2),(2,0),(4,5/6)],
            ...                  backend='ppl')  # indirect doctest
            sage: p.Hrepresentation()
            (An inequality (1, 4) x - 2 >= 0,
             An inequality (1, -12) x + 6 >= 0,
             An inequality (-5, 12) x + 10 >= 0)
            sage: p._ppl_polyhedron.minimized_constraints()
            Constraint_System {x0+4*x1-2>=0, x0-12*x1+6>=0, -5*x0+12*x1+10>=0}
            sage: p.Vrepresentation()
            (A vertex at (0, 1/2), A vertex at (2, 0), A vertex at (4, 5/6))
            sage: p._ppl_polyhedron.minimized_generators()
            Generator_System {point(0/2, 1/2), point(2/1, 0/1), point(24/6, 5/6)}
        """
        self._Vrepresentation = []
        gs = self._ppl_polyhedron.minimized_generators()
        for g in gs:
            if g.is_point():
                d = g.divisor()
                Vertex(self, [x/d for x in g.coefficients()])
            elif g.is_ray():
                Ray(self, g.coefficients())
            elif g.is_line():
                Line(self, g.coefficients())
            else:
                assert False
        self._Vrepresentation = tuple(self._Vrepresentation)
        

    def _init_Hrepresentation_from_ppl(self, minimize):
        """
        Create the Vrepresentation objects from the ppl polyhedron.
        
        EXAMPLES::

            sage: p = Polyhedron(vertices=[(0,1/2),(2,0),(4,5/6)],
            ...                  backend='ppl')  # indirect doctest
            sage: p.Hrepresentation()
            (An inequality (1, 4) x - 2 >= 0,
             An inequality (1, -12) x + 6 >= 0,
開發者ID:bgxcpku,項目名稱:sagelib,代碼行數:70,代碼來源:backend_ppl.py


注:本文中的sage.libs.ppl.C_Polyhedron.minimized_constraints方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。