當前位置: 首頁>>代碼示例>>Python>>正文


Python GenomicRegionSet.sort方法代碼示例

本文整理匯總了Python中rgt.GenomicRegionSet.GenomicRegionSet.sort方法的典型用法代碼示例。如果您正苦於以下問題:Python GenomicRegionSet.sort方法的具體用法?Python GenomicRegionSet.sort怎麽用?Python GenomicRegionSet.sort使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在rgt.GenomicRegionSet.GenomicRegionSet的用法示例。


在下文中一共展示了GenomicRegionSet.sort方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_subtract_exact

# 需要導入模塊: from rgt.GenomicRegionSet import GenomicRegionSet [as 別名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort [as 別名]
    def test_subtract_exact(self):
        reference = GenomicRegionSet("reference")
        reference.read(os.path.join(os.path.dirname(__file__), "test_result.bed"))
        background = GenomicRegionSet("background")
        background.read(os.path.join(os.path.dirname(__file__), "test_background.bed"))
        target = GenomicRegionSet("target")
        target.read(os.path.join(os.path.dirname(__file__), "test_target.bed"))

        background_tmp = background.subtract(target, exact=True)

        reference.sort()

        self.assertEqual(len(background_tmp.sequences), len(reference.sequences))

        for region, region_ref in zip(background_tmp.sequences, reference.sequences):
            self.assertEqual(region.__cmp__(region_ref), 0)
開發者ID:CostaLab,項目名稱:reg-gen,代碼行數:18,代碼來源:test_Enrichment.py

示例2: merge_delete

# 需要導入模塊: from rgt.GenomicRegionSet import GenomicRegionSet [as 別名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort [as 別名]
def merge_delete(ext_size, merge, peak_list, pvalue_list):
#     peaks_gain = read_diffpeaks(path)
    
    regions_plus = GenomicRegionSet('regions') #pot. mergeable
    regions_minus = GenomicRegionSet('regions') #pot. mergeable
    regions_unmergable = GenomicRegionSet('regions')
    last_orientation = ""
    
    for i, t in enumerate(peak_list):
        chrom, start, end, c1, c2, strand, ratio = t[0], t[1], t[2], t[3], t[4], t[5], t[6]
        r = GenomicRegion(chrom = chrom, initial = start, final = end, name = '', \
                          orientation = strand, data = str((c1, c2, pvalue_list[i], ratio)))
        if end - start > ext_size:
            if strand == '+':
                if last_orientation == '+':
                    region_plus.add(r)
                else:
                    regions_unmergable.add(r)
            elif strand == '-':
                if last_orientation == '-':
                    region_mins.add(r)
                else:
                    regions_unmergable.add(r)
                    
                    
    if merge:
        regions_plus.extend(ext_size/2, ext_size/2)
        regions_plus.merge()
        regions_plus.extend(-ext_size/2, -ext_size/2)
        merge_data(regions_plus)
        
        regions_minus.extend(ext_size/2, ext_size/2)
        regions_minus.merge()
        regions_minus.extend(-ext_size/2, -ext_size/2)
        merge_data(regions_minus)
    
    results = GenomicRegionSet('regions')
    for el in regions_plus:
        results.add(el)
    for el in regions_minus:
        results.add(el)
    for el in regions_unmergable:
        results.add(el)
    results.sort()
    
    return results
開發者ID:eggduzao,項目名稱:reg-gen,代碼行數:48,代碼來源:postprocessing.py

示例3: create_file

# 需要導入模塊: from rgt.GenomicRegionSet import GenomicRegionSet [as 別名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort [as 別名]
    def create_file(self):
        # Expanding summits
        tfbs_summit_regions = GenomicRegionSet("TFBS Summit Regions")
        tfbs_summit_regions.read_bed(self.tfbs_summit_fname)

        for region in iter(tfbs_summit_regions):
            summit = int(region.data.split()[-1]) + region.initial
            region.initial = max(summit - (self.peak_ext / 2), 0)
            region.final = summit + (self.peak_ext / 2)

        # Calculating intersections
        mpbs_regions = GenomicRegionSet("MPBS Regions")
        mpbs_regions.read_bed(self.mpbs_fname)

        tfbs_summit_regions.sort()
        mpbs_regions.sort()

        with_overlap_regions = mpbs_regions.intersect(tfbs_summit_regions, mode=OverlapType.ORIGINAL)
        without_overlap_regions = mpbs_regions.subtract(tfbs_summit_regions, whole_region=True)
        tfbs_regions = GenomicRegionSet("TFBS Regions")

        for region in iter(with_overlap_regions):
            region.name = region.name.split(":")[0] + ":Y"
            tfbs_regions.add(region)

        for region in iter(without_overlap_regions):
            region.name = region.name.split(":")[0] + ":N"
            tfbs_regions.add(region)

        tfbs_regions.sort()

        tfbs_fname = os.path.join(self.output_location, "{}.bed".format(self.mpbs_name))
        tfbs_regions.write_bed(tfbs_fname)
開發者ID:eggduzao,項目名稱:reg-gen,代碼行數:35,代碼來源:evidence.py

示例4: chip_evaluate

# 需要導入模塊: from rgt.GenomicRegionSet import GenomicRegionSet [as 別名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort [as 別名]
    def chip_evaluate(self):
        """
        This evaluation methodology uses motif-predicted binding sites (MPBSs) together with TF ChIP-seq data
        to evaluate the footprint predictions.

        return:
        """

        # Evaluate Statistics
        fpr = dict()
        tpr = dict()
        roc_auc = dict()
        roc_auc_1 = dict()
        roc_auc_2 = dict()
        recall = dict()
        precision = dict()
        prc_auc = dict()

        if "SEG" in self.footprint_type:
            mpbs_regions = GenomicRegionSet("TFBS")
            mpbs_regions.read_bed(self.tfbs_file)
            mpbs_regions.sort()

            # Verifying the maximum score of the MPBS file
            max_score = -99999999
            for region in iter(mpbs_regions):
                score = int(region.data)
                if score > max_score:
                    max_score = score
            max_score += 1

        for i in range(len(self.footprint_file)):
            footprints_regions = GenomicRegionSet("Footprints Prediction")
            footprints_regions.read_bed(self.footprint_file[i])

            # Sort footprint prediction bed files
            footprints_regions.sort()

            if self.footprint_type[i] == "SEG":
                # Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
                increased_score_mpbs_regions = GenomicRegionSet("Increased Regions")
                intersect_regions = mpbs_regions.intersect(footprints_regions, mode=OverlapType.ORIGINAL)
                for region in iter(intersect_regions):
                    region.data = str(int(region.data) + max_score)
                    increased_score_mpbs_regions.add(region)


                # Keep the score of remained MPBS entry unchanged
                without_intersect_regions = mpbs_regions.subtract(footprints_regions, whole_region=True)
                for region in iter(without_intersect_regions):
                    increased_score_mpbs_regions.add(region)

                increased_score_mpbs_regions.sort_score()

                fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[i] = self.roc_curve(increased_score_mpbs_regions)
                recall[i], precision[i], prc_auc[i] = self.precision_recall_curve(increased_score_mpbs_regions)
            elif self.footprint_type[i] == "SC":
                footprints_regions.sort_score()
                fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[i] = self.roc_curve(footprints_regions)
                recall[i], precision[i], prc_auc[i] = self.precision_recall_curve(footprints_regions)

        # Output the statistics results into text
        stats_fname = self.output_location + self.tf_name + "_stats.txt"
        stats_header = ["METHOD", "AUC_100", "AUC_10", "AUC_1", "AUPR"]
        with open(stats_fname, "w") as stats_file:
            stats_file.write("\t".join(stats_header) + "\n")
            for i in range(len(self.footprint_name)):
                stats_file.write(self.footprint_name[i] + "\t" + str(roc_auc[i]) + "\t" + str(roc_auc_1[i]) + "\t"
                                 + str(roc_auc_2[i]) + "\t" + str(prc_auc[i]) + "\n")

        # Output the curves
        if self.print_roc_curve:
            label_x = "False Positive Rate"
            label_y = "True Positive Rate"
            curve_name = "ROC"
            self.plot_curve(fpr, tpr, roc_auc, label_x, label_y, self.tf_name, curve_name)
        if self.print_pr_curve:
            label_x = "Recall"
            label_y = "Precision"
            curve_name = "PRC"
            self.plot_curve(recall, precision, prc_auc, label_x, label_y, self.tf_name, curve_name)

        self.output_points(self.tf_name, fpr, tpr, recall, precision)
開發者ID:eggduzao,項目名稱:reg-gen,代碼行數:85,代碼來源:evaluation.py

示例5: chip_evaluate

# 需要導入模塊: from rgt.GenomicRegionSet import GenomicRegionSet [as 別名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort [as 別名]
def chip_evaluate(args):
    # Evaluate Statistics
    fpr = dict()
    tpr = dict()
    roc_auc_1 = dict()
    roc_auc_10 = dict()
    roc_auc_50 = dict()
    roc_auc_100 = dict()
    recall = dict()
    precision = dict()
    prc_auc_1 = dict()
    prc_auc_10 = dict()
    prc_auc_50 = dict()
    prc_auc_100 = dict()

    footprint_file = args.footprint_file.split(",")
    footprint_name = args.footprint_name.split(",")
    footprint_type = args.footprint_type.split(",")

    max_score = 0
    if "SEG" in footprint_type:
        mpbs_regions = GenomicRegionSet("TFBS")
        mpbs_regions.read(args.tfbs_file)

        # Verifying the maximum score of the MPBS file
        for region in iter(mpbs_regions):
            score = int(region.data.split("\t")[0])
            if score > max_score:
                max_score = score
        max_score += 1

    max_points = []
    for i in range(len(footprint_file)):
        footprints_regions = GenomicRegionSet("Footprints Prediction")
        footprints_regions.read(footprint_file[i])
        footprints_regions.sort()

        if footprint_type[i] == "SEG":
            # Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
            increased_score_mpbs_regions = GenomicRegionSet("Increased Regions")
            intersect_regions = mpbs_regions.intersect(footprints_regions, mode=OverlapType.ORIGINAL)
            for region in iter(intersect_regions):
                region.data = str(int(region.data.split("\t")[0]) + max_score)
                increased_score_mpbs_regions.add(region)

            # Keep the score of remained MPBS entry unchanged
            without_intersect_regions = mpbs_regions.subtract(footprints_regions, whole_region=True)
            for region in iter(without_intersect_regions):
                increased_score_mpbs_regions.add(region)

            increased_score_mpbs_regions.sort_score()

            fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
                roc_curve(increased_score_mpbs_regions)
            recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
                precision_recall_curve(increased_score_mpbs_regions)

            max_points.append(len(intersect_regions))

        elif footprint_type[i] == "SC":
            footprints_regions.sort_score()
            fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
                roc_curve(footprints_regions)
            recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
                precision_recall_curve(footprints_regions)

            max_points.append(len(footprints_regions))

    # Output the statistics results into text
    stats_fname = os.path.join(args.output_location, "{}_stats.txt".format(args.output_prefix))
    stats_header = ["METHOD", "AUC_100", "AUC_50", "AUC_10", "AUC_1", "AUPR_100", "AUPR_50", "AUPR_10", "AUPR_1"]
    with open(stats_fname, "w") as stats_file:
        stats_file.write("\t".join(stats_header) + "\n")
        for i in range(len(footprint_name)):
            stats_file.write(footprint_name[i] + "\t" +
                             str(roc_auc_100[i]) + "\t" + str(roc_auc_50[i]) + "\t" + str(roc_auc_10[i]) + "\t" +
                             str(roc_auc_1[i]) + "\t" + str(prc_auc_100[i]) + "\t" + str(prc_auc_50[i]) + "\t" +
                             str(prc_auc_10[i]) + "\t" + str(prc_auc_1[i]) + "\n")

    # Output the curves
    if args.print_roc_curve:
        label_x = "False Positive Rate"
        label_y = "True Positive Rate"
        curve_name = "ROC"
        plot_curve(footprint_name, args.output_location, fpr, tpr, roc_auc_100, label_x, label_y, args.output_prefix,
                   curve_name, max_points=max_points)
    if args.print_pr_curve:
        label_x = "Recall"
        label_y = "Precision"
        curve_name = "PRC"
        plot_curve(footprint_name, args.output_location, recall, precision, prc_auc_100, label_x, label_y,
                   args.output_prefix, curve_name, max_points=max_points)

    output_points(footprint_name, args.output_location, args.output_prefix, fpr, tpr, recall, precision)
開發者ID:CostaLab,項目名稱:reg-gen,代碼行數:96,代碼來源:Evaluation.py

示例6: __init__

# 需要導入模塊: from rgt.GenomicRegionSet import GenomicRegionSet [as 別名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort [as 別名]
class RandomTest:
    def __init__(self, rna_fasta, rna_name, dna_region, organism, showdbs=False):
        self.organism = organism
        genome = GenomeData(organism)
        self.genome_path = genome.get_genome()
        # RNA: Path to the FASTA file
        self.rna_fasta = rna_fasta
        self.showdbs = showdbs

        rnas = SequenceSet(name="rna", seq_type=SequenceType.RNA)
        rnas.read_fasta(self.rna_fasta)
        if rna_name:
            self.rna_name = rna_name
        else:
            self.rna_name = rnas[0].name

        # DNA: GenomicRegionSet
        self.dna_region = GenomicRegionSet(name="target")
        self.dna_region.read_bed(dna_region)
        self.dna_region = self.dna_region.gene_association(organism=self.organism, show_dis=True)

        self.topDBD = []
        self.stat = OrderedDict(name=rna_name, genome=organism)
        self.stat["target_regions"] = str(len(self.dna_region))


    def get_rna_region_str(self, rna):
        """Getting the rna region from the information header with the pattern:
                REGION_chr3_51978050_51983935_-_"""
        self.rna_regions = get_rna_region_str(rna)
        if self.rna_regions and len(self.rna_regions[0]) == 5:
            self.rna_expression = float(self.rna_regions[0][-1])
        else:
            self.rna_expression = "n.a."

    def connect_rna(self, rna, temp):
        d = connect_rna(rna, temp, self.rna_name)
        self.stat["exons"] = str(d[0])
        self.stat["seq_length"] = str(d[1])
        self.rna_len = d[1]

    def target_dna(self, temp, remove_temp, cutoff, l, e, c, fr, fm, of, mf, par, obed=False):
        """Calculate the true counts of triplexes on the given dna regions"""
        self.triplexator_p = [ l, e, c, fr, fm, of, mf ]

        txp = find_triplex(rna_fasta=os.path.join(temp, "rna_temp.fa"), dna_region=self.dna_region,
                           temp=temp, organism=self.organism, remove_temp=remove_temp,
                           l=l, e=e, c=c, fr=fr, fm=fm, of=of, mf=mf, par=par, genome_path=self.genome_path,
                           prefix="targeted_region", dna_fine_posi=False)
        txp.merge_rbs(rm_duplicate=True, region_set=self.dna_region, asgene_organism=self.organism, cutoff=cutoff)
        self.txp = txp
        self.stat["DBSs_target_all"] = str(len(self.txp))
        txp.remove_duplicates()
        self.rbss = txp.merged_dict.keys()
        # if len(self.rbss) == 0:
        #     print("ERROR: No potential binding event. Please change the parameters.")
        #     sys.exit(1)

        txpf = find_triplex(rna_fasta=os.path.join(temp, "rna_temp.fa"), dna_region=self.dna_region,
                            temp=temp, organism=self.organism, remove_temp=remove_temp,
                            l=l, e=e, c=c, fr=fr, fm=fm, of=of, mf=mf, par=par, genome_path=self.genome_path,
                            prefix="dbs", dna_fine_posi=True)
        txpf.remove_duplicates()
        txpf.merge_rbs(rbss=self.rbss, rm_duplicate=True, asgene_organism=self.organism)
        self.txpf = txpf

        self.stat["DBSs_target_all"] = str(len(self.txpf))

        self.counts_tr = OrderedDict()
        self.counts_dbs = OrderedDict()

        for rbs in self.rbss:
            tr = len(self.txp.merged_dict[rbs])
            self.counts_tr[rbs] = [tr, len(self.dna_region) - tr]
            self.counts_dbs[rbs] = len(self.txpf.merged_dict[rbs])

        self.region_dbd = self.txpf.sort_rbs_by_regions(self.dna_region)

        self.region_dbs = self.txpf.sort_rd_by_regions(regionset=self.dna_region)
        self.region_dbsm = {}
        self.region_coverage = {}

        for region in self.dna_region:
            self.region_dbsm[region.toString()] = self.region_dbs[region.toString()].get_dbs().merge(w_return=True)
            self.region_coverage[region.toString()] = float(self.region_dbsm[region.toString()].total_coverage()) / len \
                (region)
        self.stat["target_regions"] = str(len(self.dna_region))

        if obed:
            # btr = self.txp.get_dbs()
            # btr = btr.gene_association(organism=self.organism, show_dis=True)
            # btr.write_bed(os.path.join(temp, obed + "_target_region_dbs.bed"))
            # dbss = txpf.get_dbs()
            # dbss.write_bed(os.path.join(temp, obed + "_dbss.bed"))

            # output = self.dna_region.gene_association(organism=self.organism, show_dis=True)

            self.txp.write_bed(filename=os.path.join(temp, obed + "_target_region_dbs.bed"),
                               dbd_tag=False,
                               remove_duplicates=False, associated=self.organism)
#.........這裏部分代碼省略.........
開發者ID:eggduzao,項目名稱:reg-gen,代碼行數:103,代碼來源:tdf_regiontest.py


注:本文中的rgt.GenomicRegionSet.GenomicRegionSet.sort方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。